
sRNAtoolbox standalone

and Docker manual
Last updated: 12/04/2022

Developed and maintained by:

http://bioinfo2.ugr.es/

Dept. of Genetics & Inst. of Biotechnology,

University of Granada, Spain

Questions and feedback: sRNAbench@gmail.com or

hackenberg@ugr.es

1 What is sRNAtoolbox?.. 6

http://bioinfo2.ugr.es/
mailto:srnabench@gmail.com
mailto:hackenberg@ugr.es

1.1 Brief history ... 6

1.2 Main features of the tools .. 6

sRNAbench: .. 6

sRNAde: .. 7

sRNAblast: .. 7

miRNAconsTarget: ... 7

sRNAhelper: .. 8

2 Getting started ... 8

2.1 Webserver .. 8

2.2 sRNAtoolbox Docker .. 9

2.3 Standalone versions ... 9

2.4 Populate the database ... 10

2.5 Launch sRNAbench with helper tool launcherLibs .. 11

2.6 Launch sRNAde with helper tool LaunchDE ... 15

3 sRNAbench ... 16

3.1 Main features ... 16

3.2 Quick start and working examples ... 17

3.2.1 Preprocessing .. 17

3.2.4 Prediction of novel microRNAs ... 21

3.2.5 Using other libraries ... 21

3.2.6 Detecting isomiRs .. 22

3.2.7 Visualizing alignments ... 23

3.3 sRNAbench parameters .. 23

3.3.1 Basic parameters ... 23

3.3.2 Preprocessing: Adapter trimming ... 25

3.3.3 Preprocessing: Barcodes and random adapters 25

3.3.4 UMIs (Unique Molecular Identifier) .. 26

3.3.5 Preprocessing: Length and count thresholds .. 26

3.3.6 Preprocessing: Quality control ... 27

3.3.7 Mapping parameters ... 27

3.3.8 Profiling parameters ... 28

3.3.9 Detection of isomiRs .. 29

3.3.10 Output options .. 29

3.3.11 Produce BedGraph output .. 30

3.3.12 Prediction of novel microRNAs ... 30

3.3.13 Make Genome Distribution statistics ... 30

3.3.14 Program names ... 31

3.4 sRNAbench feature and implementation .. 31

3.4.1 Analysis steps ... 31

3.4.2 Genome mode ... 31

3.4.3 Library mode .. 32

3.4.4 Ambiguous mapping treatment .. 32

3.4.5 IsomiR/isoRNA detection and classification .. 33

3.4.6 Prediction of novel microRNAs ... 36

3.4.7 Sequence variants ... 37

3.5 Output files .. 37

3.5.1 Summary and log files .. 37

3.5.2 Fasta files ... 38

3.5.3 Expression profiling: *.grouped Files .. 38

3.5.4 Expression profiling: Single Assignment files: *_SA.grouped 39

3.5.5 microRNA_species.txt (stat folder) .. 39

3.5.6 isomiR output: mature.iso files ... 40

3.5.7 canonical.txt .. 41

3.5.8 isomiR annotation ... 41

3.5.9 Per mature microRNA isomiR summary (isomiR_summary.txt) 41

3.5.10 Sample isomiR summary .. 42

3.5.11 Sample summary as a function of NTA length .. 42

3.5.12 The “reads.annotation” file ... 43

3.5.13 Read Length distribution .. 43

3.5.14 Distribution format ... 44

3.5.15 RNA distribution summary .. 44

3.5.16 The genome distribution: genomeDistribution.txt 44

3.6 RNA distribution as a function of length ... 45

3.7 Alignment files - processing pattern .. 45

3.7.1 Novel microRNAs .. 46

3.7.2 Putative sequence variants: microRNA_seqVariants.txt 47

3.8 Tips and tricks .. 47

3.8.1 Overwrite the mapping parameters .. 48

3.8.2 Using bowtie indexes as libraries in genome mode 48

3.8.3 Multi-species analysis .. 48

3.8.4 Construction of shared libraries .. 49

3.8.5 Prediction of novel microRNAs ... 49

3.8.6 profile tRNAs ... 49

4 sRNAde: Differential expression ... 49

4.1 Mandatory parameters: sRNAbench input ... 50

4.2 Mandatory parameters: expression matrix input ... 50

4.3 Additional parameters for sample descriptions ... 50

4.4 Differential expression based on *.grouped files ... 51

4.5 Make summary files ... 52

4.6 IsomiR analysis .. 52

4.7 isomiR analysis at a read level ... 53

4.8 Make expression matrix from fasta files .. 53

4.9 Analyse annotated reads .. 53

4.10 General parameters for differential expression and heatmaps 54

4.11 Differential Expression output ... 54

4.11.1 “diffExpr=true” output ... 54

4.11.2 “iso=true” output .. 55

4.11.3 “seqStat=true” output files ... 55

5 sRNAblast (Docker) .. 56

5.1 sRNAblast parameters ... 56

5.2 sRNAblast output files ... 56

5.2.1 Format of tax.out, speciesSA.out and species.out 57

6 miRNAconstargets .. 58

6.1 Launch miRNAconstargets .. 58

6.2 miRNAconstargets parameters .. 58

6.3 miRNAconsTargets output files ¡Error! Marcador no definido.

7 Apendix ... 58

7.1 Standalone versions ... 58

7.1.1 Dependencies .. 58

7.1.2 Get started with the standalone ... 59

7.2 Manually populate sRNAtoolboxDB .. 60

7.2.1 Genome sequences ... 60

7.2.2 microRNAs ... 60

7.2.3 Other small RNA species ... 60

7.2.4 sRNAbench helper tools .. 61

8 FAQs ... 61

9 References ... 61

1 What is sRNAtoolbox?

● sRNAtoolbox is a collection of several tools for RNA based research, including

expression profiling from NGS data, differential expression, analysis of

unmapped reads with blast and consensus target prediction and analysis.

● The key tool of sRNAtoolbox is sRNAbench (Barturen et al., 2014) which is the

successor program of miRanalyzer (Hackenberg et al., 2009, 2011) a tool for

expression profiling of small RNAs and prediction of novel microRNAs.

● sRNAtoolbox is implemented into a webserver, a Docker, and some of the

programs can be furthermore downloaded as standalone versions.

1.1 Brief history

● In 2009 we published the first web-server for the analysis of miRNA-seq data in

Nucleic Acids Research (Hackenberg et al., 2009).

● In 2011 an updated version was released and published in NAR again

(Hackenberg et al., 2011).

● Shortly after the publication in 2011, novel features like the detection and

classification of isomiRs were added.

● In 2013, miRanalyzer was completely redesigned, re-implemented and renamed

to sRNAbench published (PDF) in 2014 (Barturen et al., 2014).

● In 2014 the differential expression module of sRNAbench was redesigned and

named sRNAde. This program counts in its last version with 5 different DE

programs generating furthermore a consensus differential expression.

● In 2014/15 sRNAbench, sRNAde and other tools were published together as

sRNAtoolbox (Rueda et al., 2015).

● In 2017 we published a protocol for small RNA analysis in Methods Mol. Biol.

(Gómez-Martín et al., 2017).

● In 2019 a sRNAtoolbox update (Aparicio-Puerta et al., 2019) was published

adding features like batch mode, extended databases and improved differential

expression.

1.2 Main features of the tools

sRNAbench:

sRNAbench was first published as the replacement tool of miRanalyzer, but later it

was incorporated into the sRNAtoolbox collection of sRNA tools.

Most important features include:

● Expression profiling of microRNAs (miRBase (Kozomara et al., 2019),

MiRGeneDB (Fromm et al., 2022), miRCarta (Backes et al., 2018) and PmiREN

(Guo et al., 2020)) and other small RNAs (RNAcentral

(The RNAcentral Consortium, 2019)). Libraries that should be profiled can be

customized and defined easily by the user.

http://nar.oxfordjournals.org/content/early/2015/05/26/nar.gkv555.long
https://arn.ugr.es/srnatoolbox
https://hub.docker.com/r/ugrbioinfo/srnatoolbox
https://bioinfo2.ugr.es/srnatoolbox/standalone/
https://arn.ugr.es/srnatoolbox/static/sRNAbench_article.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489306/
https://academic.oup.com/nar/article/47/W1/W530/5494756
https://arn.ugr.es/srnatoolbox/static/sRNAbench_article.pdf
http://bioinfo2.ugr.es:8080/ceUGR/miRanalyzer
http://nar.oxfordjournals.org/content/early/2015/05/26/nar.gkv555.long

● Detection and classification of isomiRs allowing both redundant and non-

redundant classification schemas.

● Prediction of novel microRNAs (animal and plant models)

● Built in pre-processing and quality control of fastq input data. All major

protocols (Illumina, NEBnext, NextFlex, Qiagen) are supported.

● Analysis of samples with UMIs and spike-ins molecules.

● sRNAbench can detect automatically the library processing protocol and/or the

species.

● A basic analysis of sequence variants is performed, i.e. the positions with

variants are counted and provided in an output file.

● Genome mapped reads in bedGraph and BigWig format can be reported. Those

can then be used visualization in programs like IGV.

● Extensive statistics: read length distributions of mapped, unmapped, assigned

and unassigned reads or as a function of assigned RNA species (for example,

read length distribution of all reads assigned to a miRNA), genome mapping

statistics (mapping distribution in a multi-species assay), and visualizations of

the mature miRNA alignments.

● Basic classification and analysis of tRNA derived fragments.

sRNAde:

● Detection of differentially expressed small RNAs based on 4 commonly used

programs: DESeq (Anders and Huber, 2010), DESeq2 (Love et al., 2014), edgeR

(Robinson et al., 2010), and NOISeq (Tarazona et al., 2015) and a standard t-

test.

● Detection of consensus differential expression.

● Detection of differences in isomiR profiles.

● By means of sRNAde, all individual sRNAbench result files can be summarized

at a study level. Certain columns can extracted generating an expression matrix

(feature matrix) output file (one column per sample).

sRNAblast:

● Unmapped or unassigned reads can be further analysed by means of BLAST. By

default, the remote databases from NCBI are used (nr/nt by default).

● Output files are generated at read, species and kingdom levels.

● Often, a read can map to several species with the same quality. Therefore we

perform a probabilistic single assignment to obtain the most likely species.

The results can either point towards contamination sources or biological meaningful

information like the presence of unexpected viral or bacterial RNA molecules.

miRNAconsTarget:

● MiRNA Target prediction based on Miranda (John et al., 2004), PITA (Kertesz

et al., 2007), TargetSpy (Sturm et al., 2010) and simple seed methods for animal

https://igv.org/
http://bioconductor.org/packages/release/bioc/html/DESeq.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.bioconductor.org/packages/release/bioc/html/NOISeq.html
http://www.microrna.org/microrna/getDownloads.do
http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-292

microRNAs. For plants Tapir (Bonnet et al., 2010) and psRobot (Wu et al.,

2012) are used.

● Consensus targets at a miRNA/mRNA level (the target site positions need not to

coincide between methods) and at a position level (the methods must call same

miRNA/mRNA at the same position).

sRNAhelper:

We implemented a helper tool to aid the user in several different analysis steps.

● sRNAhelper: parse out sequences from RNAcentral at species or taxonomy

level, extract subsets or manipulate fasta files with a given search pattern or

remove duplicates from fasta files.

● Populate: download annotations from our database installing them directly

● launcherLibs: automate the execution for a larger number of samples (using

library mode).

● Several tools that assist the user in the analysis and the generation of the local

database.

● Update: Maintain your sRNAtoolbox binaries up to date.

Figure 1: sRNAtoolbox graphical abstract (2019)

2 Getting started

There are 3 ways to use sRNAtoolbox (or parts of it): Webserver, Docker or standalone

versions. We discourage the usage of standalone as several dependencies exist

(Appendix 7.1).

2.1 Webserver

https://academic.oup.com/nar/article/47/W1/W530/5494756

The easiest way is to use the webserver which can be accessed here: sRNAtoolbox

webserver.

2.2 sRNAtoolbox Docker

The sRNAtoolbox docker provides the user with a number of preinstalled programs like

all sRNAtoolbox tools, Vienna package, bowtie, samtools etc. needed for common small

RNA data analysis.

First of all Docker must be installed. To install Docker in Ubuntu and MacOS please

do the following:

1 – Install docker

sudo apt update

sudo apt install docker.io

2- Start docker as a service

 sudo systemctl start docker

 sudo systemctl enable docker

To install Docker Desktop in Windows please follow these instructions.

sRNAtoolbox docker is hosted in Dockerhub so the first step is to pull the image from it:

sudo docker pull ugrbioinfo/sRNAtoolbox:latest

After this, your sRNAtoolbox docker image is downloaded and now you can launch it:

sudo docker run --hostname sRNAtoolbox --name sRNAtoolbox --user srna --

workdir /home/srna -it ugrbioinfo/sRNAtoolbox:latest /bin/bash

Alternatively if you want to start the container with shared folders:

sudo docker run --hostname sRNAtoolbox --name sRNAtoolbox --user srna --

workdir /home/srna --mount

type=bind,source=MACHINE_FOLDER,destination=/shared/shared_folder -it

ugrbioinfo/sRNAtoolbox:latest /bin/bash

After the first use you can exit the container by typing “exit” and stop the container with

the following:

sudo docker stop sRNAtoolbox

For further uses:

sudo docker start sRNAtoolbox

sudo docker exec -term=SCREEN -it sRNAtoolbox /bin/bash

2.3 Standalone versions

http://arn.ugr.es/srnatoolbox
http://arn.ugr.es/srnatoolbox
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

For some tools, standalone versions are available. Note that these depend on other

programs like bowtie, samtools, blastn etc, and therefore the installation is not as

straight forward as the usage of the Docker. It is explained in the Appendix 7.1.

2.4 Populate the database

The Docker includes a script called populate that downloads and installs user defined

species. Over 300 species are available in our database (animals, plants, virus and

different bacterial, fungi and virus collections). How to manually populate the database

is described in Appendix 7.2.

To use it execute it in a terminal:

populate ‘pathTosRNAtoolboxDB (default: /opt/sRNAtoolboxDB)

populate has no mandatory parameters, by default the database is assumed to be in:

/opt/sRNAtoolboxDB

This script will open a dialog where you can select the species to install in the DB as it

is shown in Figure 2.

Figure 2: screenshot of populate. The species can be selected with ‘space’ – with

enter you pass to next page

IMPORTANT: The species can be selected with ‘space’ and with enter you pass to next

page

The result of the populate tool can be seen in the local sRNAtoolboxDB database (by

default /opt/sRNAtoolboxDB) and in the ‘info’ file (by default /home/srna/info). Figure

3 shows a screenshot of this info file. It indicates the names of the reference files that

are needed to use them with sRNAbench.

Figure 3: Screenshot of the ‘info’ file (in the root of the home directory of the user,

by default /home/srna/info)

2.5 Launch sRNAbench with helper tool launcherLibs

The Docker includes a script called launcherLibs to prepare the commands/launch

sRNAbench in library mode. This helper tool will generate a batch file that can either be

manipulated or launched directly by the user.

Similar to the populate tool is a dialog window where you can select some options.

There are three possible scenarios depending on the inputFiles, but all of them have a

set of options in common:

1- Species Selection

In this dialog you will have to provide small name of the species you want to

use (eg. hsa for Homo sapiens or mmu for Mus musculus) separated by “:” if

more than one are going to be used:

2- Type of alignment: You can choose between “seed” or “full alignment”:

3- Protocol selection:

4- Number of mismatches:

5- Detection of isomiRs:

6- Input directory (only if not provided). Please notice that you can select with

the spacebar the directory that it's highlighted (or enter into it):

7- Choose between Launch or just Save the batch file. If you choose Save the

batch file it will be saved in the output directory.

8- If you choose Launch in the previous step, you can choose the number of

threads to use and just launch sRNAbench.

As it was pointed out before, there are three possible scenarios that depends on the input

and that are the following:

a. A sampleSheet.tsv is provided

In this scenario the launcherLibs script is launched as it follows:

launcherLibs --inputPath /home/srna/testData/ --outputPath

/home/srna/testResults --sampleSheetFile /home/srna/testData/sampleSheet.tsv

As the sampleSheet is provided, you specify in it the samples that are going to be analysed

and the group to which they belong. You will find an example of a sampleSheet.tsv in

/home/srna/testData/sampleSheet.tsv.

In the inputPath parameter you should provide (but not necessarily) the input directory

where the inputFiles. Analogously with the outputPath, that if it is not indicated you can

choose with the utility.

At the end a sampleSheet_DE.tsv file will be generated in order to use it with the

sRNAde tool.

b. All the samples are inside the same folder and a sampleSheet.tsv it is not

provided

In this scenario launcherLibs script is launched as it follows:

launcherLibs

The tool will ask about all the items enumerated before (including input and output

folders) and a sampleSheet_DE.tsv will be created at the end. You can edit this

sampleSheet_DE in order to change the groups (that by default are Group_1 in all

samples) and use it with sRNAde.

c. The samples are inside different folders and a sampleSheet.tsv it is not provided

In this case two options are available, that each folder represents a different group or

that each folder represents a sample. After selecting the input directory the utility will

ask about this possibility with the following dialog:

You should choose between these two options.

a. Folders are groups

If each folder represents a group (for further processing with sRNAde)

when the following dialog is finished a sampleSheet_DE.tsv will be

created and each sample will have assigned the group of the folder where

it is.

b. The folders are different samples

If each folder represents a sample all files inside a folder will be treated

as the same sample and in the sampleSheet_DE.tsv all the samples will

be assigned to the Group_1. You should edit that in order to use it with

sRNAde.

2.6 Launch sRNAde with helper tool LaunchDE

The Docker includes a script called LaunchDE to launch sRNAde. To use it execute it

in a terminal:

LaunchDE sampleSheet_DE.tsv sRNAbench_outputFolder/ sRNAde_outputFolder

The script has 3 parameters:

● sampleSheet_DE.tsv: A sample sheet as the one that you can obtain with

launcherLibs. It should be a 3 column .tsv file.

● sRNAbench_outputFolder: The folder where the results of sRNAbench are

located

● sRNAde_outputFolder: The output folder for sRNAde analysis.

3 sRNAbench

sRNAbench is a program for processing small-RNA data obtained from next generation

sequencing platforms such as Illumina or SOLiD. Figure 3 shows the sRNAbench

features and work flow.

Figure 3: Schematic overview on sRNAbench features. On the bottom at the right, the

differential expression analysis is mentioned which is performed by sRNAde:

Differential expression.

3.1 Main features

● Two different ways can be used to profile the expression levels of small RNAs

depending on whether a good genome sequence/annotation is available: i) mapping

all short sequence reads first against the genome, obtaining the expression levels by

means of an annotations in fasta or BED format at a second stage (genome mode)

and ii) mapping against sequence libraries in fasta/Bowtie index format directly

(library mode like it was done by miRanalyzer).

● An unlimited number of genomes can be used in the analysis at the same time

without the need to pool all sequences into a single file/Bowtie index. This feature is

especially important when analyzing the interaction between parasites and hosts,

symbiosis or virus infected cells.

● Adapter trimming can be performed and sRNAbench accepts fastq, fastq.gz, read

count and fasta input format.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125730/

● Most currently used library protocols are supported including UMIs and random

adapters.

● Spike-in sequences can be provided.

● Extensive profiling of all microRNA sequence and length variants (isomiRs).

Furthermore, NTAs (non-templated additions) can be detected for all sequence

libraries and not only for microRNAs.

● Several summary and graphical summaries are available.

● The prediction of novel microRNAs was improved compared to miRanalyzer in the

sense that it is much more specific now. The prediction is based on structural,

sequence and biogenesis features.

3.2 Quick start and working examples

The start-up database contains test data from this publication. The test data is obtained

from primary effusion lymphoma cell line BC-1 (human) which additionally contains

two viruses, human herpesvirus type 8 (HHV-8) and Epstein-Barr virus (EBV). This

data set is aimed to show one of the principal strength of sRNAbench, the possibility to

analyze multi-species assays.

In this section we will give a brief protocol for a basic analysis of small RNA

sequencing data. For a more extensive protocol please see sRNAtoolboxVM: Small RNA

Analysis in a Virtual Machine. In general, the commands will work directly if the user

installed the database into /opt/sRNAtoolboxDB. The full path to the java files should

be specified always like this:

java –jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

Or (in Docker):

‘sRNAbench’ is a small, executable shell script that launches the java jar file.

sRNAbench

Following we will illustrate the use of sRNAbench by means of some examples:

3.2.1 Preprocessing

By means of the protocol=<> parameter (see protocol=<I,NN,Ia,B,Q,S,guess>), the

use can specify the used library processing protocol or protocol=guess will make

sRNAbench to guess the protocol.

An important step in the analysis of high-throughput small RNA sequencing data is the

detection of the 3’ adapter sequence. Many small RNAs (or RNA fragments) have

lengths between 21/22 nt (mature microRNAs) and 33 nt (tRNA halves), and therefore

Important novelties in 2.x:

UMIs and random adapters are supported

Spike-in sequences can be used

Guess protocol and guess species function

http://www.cell.com/cell-host-microbe/abstract/S1931-3128(11)00331-3?switch=standard

the adapter or part of it will be sequenced as well at nowadays typical read lengths of

36-100nt. As a consequence, the pre-processing consists normally of two basic steps: i)

adapter trimming (detect and remove the adapter sequence) and ii) read collapsing

(determine the unique reads and assign a read count to them, i.e. the number of times

they have been sequenced).

Like mentioned above, a subsequence from the 5’ end of the adapter sequence can be

present in the read sequence. Its detection and removal is a highly parametrized process.

Briefly, sRNAbench:

● Aligns the first N nucleotides (adapterMinLength parameter, see below) from

the 5’ end of the adapter to the read allowing adapterMM mismatches and no

gaps.

● By default the adapter is searched in the whole read, but by means of

adapterStart the position where the search starts can be specified.

If the adapter is detected the read is trimmed at the first adapter position.

The following command will perform the pre-processing generating additionally length

distribution files.

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar input=SRR343332

output=/opt/sRNAtoolboxDB/out/SRR343332_pre adapterMinLength=6

adapter=TCGTATGCCG removeBarcode=5

Explanation of used Parameters

● input: if the input name is not an existing file, then sRNAbench will try to

download from SRA (Short Read Archive). Otherwise, fastq, fasta and

read/count format is accepted.

● adapter: the adapter sequence that will be trimmed of the 3’ end of the reads

● removeBarcode: Three different barcodes have been added to the 5’ end of the

reads in this data set (SRR343332). The barcodes have a fixed length of 5 nt and

they must be trimmed before trying to align the reads. This command removes a

fixed number of nucleotides from the 5’ end of each read.

● adapterMinLength: By default, sRNAbench forces the detection of at least 10nt

of the adapter sequence. However, taking into account that the reads of

SRR343332 have 36 nt length, out of which 5 nt correspond to the barcode will

have at most 31 nt ‘useful’ information. Therefore we cannot use the default

minimum adapter length as this would imply that we can only profile small

RNAs equal or shorter than 31nt -10nt = 21nt. Therefore, we will set the

minimum adapter length to 6nt allowing the profiling of small RNAs up to 25 nt.

As the adapter length is quite short the allowed max. number of mismatches in

adapter detection will be reduced to 0 (adapterMinLength=0)

Important output files

● reads.fa and reads_orig.fa: after the process finishes, reads.fa contains all

unmapped reads, while reads_orig.fa contains the initial set of adapter trimmed

and cleaned reads.

● results.txt: the summary of the run

● log.txt: a log file that protocols all steps – it contains all errors and warnings that

might have occurred.

● short_reads.txt: the reads filtered out due to minReadLength parameter (default

15nt)

Files located in the stat folder:

● readLengthFull.txt: the length distribution of all raw reads after adapter

trimming

● readLengthAnalysis.txt: the length distribution of all adapter trimmed reads in

the analysis (i.e. after quality and length filtering)

3.2.2 microRNA profiling (Library mapping mode)

First, we will align the input data to miRBase libraries for the three species:

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_miR microRNA=hsa:ebv:kshv

Explanation of used Parameters

● microRNA=’short species name’: In miRBase, the nomenclature makes

reference to the species in the first 3-4 letters. For example, hsa-mir-21 refers to

microRNA 21 in Homo sapiens while mmu-mir-21a would be the homologous

microRNA in Mus musculus. This first part of the microRNA name is used to

parse out the reference sequences of the species that should be analysed. More

than one species can be selected separating them by ‘:’.

● input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa: the adapter

trimmed reads from the last section are used as input.

Important output files

● ‘mature_sense.grouped’: holds the expression values of the mature sequences.

The format is explained here: Expression profiling: *.grouped Files

● ‘mature_sense_SA.grouped’: the single assignment expression file. Multiple

mapping of reads is a well-known problem in HTS data analysis. MicroRNAs

are frequently members of broader families that contain several genes with

highly similar mature sequences. sRNAbench addresses this problem in two

ways: i) a simple adjusted expression value is calculated dividing the read count

of each read by the number of reference sequences or genome loci to which they

map and ii) by determining a ‘single assignment’ expression value, i.e. each read

is only assigned to one sequence or loci, i.e. to the one with the highest

expression value. Therefore, for each expression file, like

‘mature_sense.grouped’, one with ‘single assignment’ expression values are

generated.

● ‘hairpin_sense.grouped’; the expression of the precursor sequences including the

mature sequences

● ‘hairpin_sense_SA.grouped’: the expression values of this file are based only on

those reads that map to the precursor, BUT NOT to the mature sequences. This

is because in the single assignment, the reads are first assigned to the mature

sequences and then to the precursors. For most microRNAs, the number of

reads uniquely mapped to the precursor but not to the mature sequence should be

close to cero. Therefore, those precursors with high number of uniquely mapped

reads could be incorrect microRNAs (false positive annotations).

● reads.annotation: the annotation of all assigned reads.

● mappingStat.txt and mappingStat_sensePref.txt: the mapping statistic to the

different types of used annotations (here only microRNAs)

● hairpin folder: which holds two types of files: i) ‘*.align’ files that show all

reads mapped to the sequence (Figure 2c) and ‘*.countArray’, which gives the

percentage of read coverage based on unique reads (UR) and total read count

(RC) and the RPM (read per million) expression per base.

● microRNA_species.txt: the distribution of microRNAs over the different

species. Only written if more than one species for used for profiling.

● assignedReads and unAssignedReads files see here.

● rnaComposition_readLength_sensePref.txt and

rnaComposition_readLength.txt: the distribution of detected types of RNAs as

a function of length.

3.2.3 Genome mapping mode

The same analysis as carried out last section can also be performed by means of the

genome mapping mode. Note that in the default database contains only human

chromosome 22, and therefore only the microRNAs located on this chromosome can be

profiled.

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_miRgenome microRNA=hsa:ebv:kshv

species=chr22:NC_007605:NC_009333

In comparison to the library mapping, there are only minor differences in the number of

output files

Explanation of used parameters

● species=’name of the bowtie index’: this parameter specifies the name of the

bowtie index (of the genome assembly) that should be used to map the reads

first against a genome. The bowtie indexes are located in the ‘index’ folder

about:blank
about:blank

within the sRNAtoolbox database. Several genome assemblies can be used

simultaneously separating them by ‘:’

Important output files

● genomeDistribution.txt: the number of reads mapped to the different species.

This file is also written if only one assembly is used as it contains also the

frequency of redundant and non-redundant reads. By default, bowtie is launched

with the –m parameter, i.e. only those reads that map at most N (-m N) times are

reported (see

● seed=<int>: the length of the seed (-l parameter in Bowtie). (default: seed=19)

● bowtieReportType=<String>: in #sRNAbench parameters section). Those that

map <= N times are called non-redundant and those that map > N times are

called redundant.

● genomeDistribution folder: contains the reads assigned to the different

assemblies in fasta format and the corresponding read length distribution.

● genomeMappedReads.fa: the reads mapped to any of the genome assemblies.

Important: only non-redundant reads (by default those that are mapped at most

10 times to the assembly) are included (see

● seed=<int>: the length of the seed (-l parameter in Bowtie). (default: seed=19)

● bowtieReportType=<String>:).

● genomeMappedReads.readLen: the read length distribution of genome

mapped reads.

3.2.4 Prediction of novel microRNAs

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_prediction microRNA=hsa:ebv:kshv

species=chr22:NC_007605:NC_009333 predict=true minReadLength=19

maxReadLength=25

Explanation of used parameters

The prediction of novel microRNAs is activated with predict=true. By default the

models for animals are used. For plants, kingdom=plant needs to be set. The read

lengths should be limited to reasonable microRNA sizes (including 3’ length variants).

Here with between 19 nt and 25 nt. See Prediction of novel microRNAs for all related

parameters.

Important output files

● novel.txt: Summary of novel microRNAs

● novel_mature.fa and novel_hairpin.fa: mature and pre-microRNA sequences

of novel microRNAs

● folder novel: contains the alignments to the novel pre-microRNA sequences

3.2.5 Using other libraries

Other libraries can be analyzed with libs='library name'. If the library is given in fasta

format, sRNAbench will first generate a bowtie index of this file. Otherwise, the library

will be mapped to the genome in order to obtain the chromosome coordinates of the

reference sequences.

Warning: In genome mode, only unspliced reference sequences should be given in

fasta format. Spliced genes should be given as bowtie indexes (see Section 2.4.3 and

Section 7.2).

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_libs microRNA=hsa:ebv:kshv libs=hg19-

tRNAs.fa plotLibs=true minRCplotLibs=100

Explanation of used parameters

● libs=<library name>: The name of the file that holds the reference sequences for

this library. They can be given either in fasta format or as bowtie index. In

genome mode, BED and GFF format is supported as well.

● plotLibs=<boolean>: if set to true, then the alignment files will be written out

into a ‘library name’ folder. One file per reference sequence which has more

than XXX mappings.

● minRCplotLibs=<int>: The alignment files only those sequences with a read

count higher than 100 are plot

Note: plotLibs=<true> will also calculate the secondary structure of the reference

sequence, BUT only if the sequence length is below a given threshold

(maxLenForSecStruc=<int>)

Important output files

● hg19-tRNAs_sense.grouped and hg19-tRNAs_antisense.grouped: Reads

mapped to the sense and antisense strands of the hg19-tRNA.fa library.

● hg19-tRNAs_sense_SA.grouped and hg19-tRNAs_antisens_SA.grouped:

Single Assignment files of tRNA frequencies.

● hg19-tRNA folder: contains the alignments to the reference sequences (tRNA

sequences in this example)

3.2.6 Detecting isomiRs

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_libs microRNA=hsa:ebv:kshv

isoMiR=true

Explanation of used parameters

IsomiRs can be detected adding isoMiR=true. See section 3.3.7 (Detection of isomiRs).

Important output files

● mature.iso: isomiR information for each mature microRNA. Explanation of

output format

● microRNAannotation: isomiR annotation at a read level. Explanation of

output format.

● isomiR_summary.txt (in stat folder): The number of reads found for all

isomiR classes for each of the mature microRNAs. Explanation of the output

format.

● isomiR_NTA.txt and isomiR_otherVariants.txt (in 'stat' folder): isomiR

summary of the sample. Explanation of the output format.

● isomiR_lenNTA.txt (in ‘stat’ folder): summary of non-templated additions as

a function of 'addition length' (for example 1, 2, 3, etc. A's added). Explanation

of the output format.

3.2.7 Visualizing alignments

Just like shown above for microRNAs, the alignment files and frequency counts along

the annotation sequence can be generated also for other libraries.

java -jar /opt/sRNAtoolboxDB/exec/sRNAbench.jar

input=/opt/sRNAtoolboxDB/out/SRR343332_pre/reads_orig.fa

output=/opt/sRNAtoolboxDB/out/SRR343332_libs microRNA=hsa:ebv:kshv libs=hg19-

tRNAs.fa plotLibs=true

Explanation of used parameters

The alignment visualization files can be generated setting plotLibs=true. See this for

further information.

Important output files

● For each library, and folder with the alignment files will be generated. In our

example: hg19-tRNAs

3.3 sRNAbench parameters

In general, the parameters have to be given in the following form: parameter=value. For

example to specify the mandatory path to the local database: dbPath=/home/usr/...

3.3.1 Basic parameters

● input=<String>: the path to the input file (fastq, read/count, fasta). This is the

only mandatory parameter read/count format is simply like this

● dbPath=<path to folder>: the full path to the sRNAtoolbox database (default:

dbPath=/opt/sRNAtoolbox)

● output=<Folder>: The output folder. (Default: output=dbPath/out)

● microRNA=<species list>: the species from which the microRNA annotations

should be used for the analysis. An arbitrary number of species can be used

given the short species names separated by ':'. For example microRNA=hsa:ebv

will map the input reads simultaneously to human (hsa) and Epstein-Barr virus

(ebv) microRNAs.

● miRdb=<1,2,3,4,5>: miRdb=1 (miRBase); miRdb=2 (MirGeneDB); miRdb=3

(PMiren); miRdb=4 (miRCarta); miRdb=5 (miRBase high confidence)

● libs=<String>: the name of the library file. Typically, those files would hold

other types of small RNAs like tRNA, snoRNA, snRNA, piRNA, rRNA, yRNA,

vaultRNA, etc. If only a name is given, than the program will search for the file

in the default sRNAbench database folder ('libs'). If a full path is given the

program will use this file which needs not to be within the sRNAbench database.

The files can be given in fasta and BED format, or directly the Bowtie indexes

(the basename of the index). libs=<String> can be given several times on the

command line!

● protocol=<I,NN,Ia,B,Q,S,guess>: The protocol used for the library

preparation.: protocol=I (Illumina); protocol=NN (NEBnext);protocol=Ia (old

Illumina adapter TCGT...), protocol=B (NextFlex), protocol=Q (QIAseq/Qiagen

with 12nt UMIs), protocol=S (SMARTer), protocol=guess (guess the protocol).

Note that sRNAbench can handle adapter trimming, random adapters and UMIs.

If your library preparation is not available, either try with guess, or you can

custumize with the adapter= remove3pBases= removeBarcode= and umi=

parameters (see 3.3.2)

● libsFilter=<String>: the name of the libraries that should be use to filter out

certain reads prior to the expression profiling of microRNAs and other libraries.

The reads mapping to those libraries are filtered out. The libraries should be

given in fasta format or as bowtie indexes. libsFilter=<String> can be given

several times on the command line!

● species=<genome assembly list>: the genome sequences that will be used. If

this parameter is set, then the 'genome mode' will be used, 'library mode'

otherwise. An arbitrary number of different genome sequences (bowtie indexes

of these sequences) can be used separated by ':'. For example,

hg19_5:NC_007605 will map the input reads simultaneously to hg19_5 (in this

case, hg19_5 is the bowtie index basename of the human genome version

hg19/NCBI37 path 5 genome sequence) and the Epstein-Barr virus genome

sequence. Note that, the Bowtie indexes for the genome sequences must be

located within the 'index' folder in the sRNAbench database having the

basenames that are given on the command line.

● solid=<Boolean>: if set to true, SOLiD input data is expected. (default:

solid=<false>)

● tRNA=<tRNA library>: A tRNA specific analysis will be carried out including

the detection and classification of tRNA fragments.

● homolog=<species list>: A string of short species names is accepted in the same

format as explained above (microRNA=). For example, homolog=mmu:rno

would map the reads (after the profiling of known microRNAs) to the hairpin

sequences of mouse and rat in order to detect putative novel microRNAs based

http://www.mirbase.org/
https://mirgenedb.org/
https://www.pmiren.com/
https://mircarta.cs.uni-saarland.de/

on homology. homolog=all will use all species except those given with

microRNA=.

● mature=<String>: the name of the library that holds the mature microRNAs

(for example mature.fa from miRBase) (default: mature=mature.fa)

● hairpin=<String>: the name of the microRNA precursor sequences (for

example hairpin.fa from miRBase) (default: hairpin=hairpin.fa)

● p=<int>: The number of threads that will be assigned. This is applied both to

the bowtie alignment but also to the parallelized parts of sRNAbench. Default:

p=<4>

● sep=<String>: Only applies to fasta input format! This parameter allows to give

the separator by which the 'ID' and the 'Read Count' are separated. For example:

>1-45798 (ID=1, Read Count = 45798) would need sep=- (Default: sep=#)

3.3.2 Preprocessing: Adapter trimming

● adapter=<String>: the adapter sequence. If this parameter is NOT given on the

command line, then the input is assumed to be adapter trimmed already (if

guessAdapter=<false>)

● guessAdapter=<boolean>: the program tries to guess the adapter. Important:

This parameter overrules the adapter= parameter! Briefly, sRNAbench will align

the first 250000 reads to the genome using the bowtie seed functionality (the

adapters will not count for the mismatches). Out of all aligned reads, the adapter

sequence is defined as the most frequent 10-mer starting at the first mismatch.

(default=<false>)

● recursiveAdapterTrimming=<boolean>: The adapter is recursively detected

and trimmed. If at least adapterMinLength bases of the adapter cannot be found

within the read sequence, then the adapter is recursively detected only at the 3’

end of the read. This function might be indicated for read length 36 if sRNA

populations of length between 27 and 34 should be analyzed (default=<false>)

● holdNonAdapter=<boolean>: include also those reads into the data analysis

for which the adapter sequence was not found (default:

holdNonAdapter=<false>)

● adapterStart=<int>: the base in the read where the adapter search should be

started in 0-based coordinates (default: adapterStart=0)

● adapterMinLength=<int>: the minimum length of the adapter that needs to be

detected (default: adapterMinLength=10)

● adapterMM=<int>: the maximum number of mismatches allowed between the

adapter sequence and the read (default: adapterMM=1)

● writeNonAdapter=<boolean>: write out the reads for which the adapter was

not found (default: writeNonAdapter=<false>)

3.3.3 Preprocessing: Barcodes and random adapters

● remove3pBases=<int>: removes <int> nucleotides after adapter trimming from

the 3' part of the read. This might be useful for many 'random adapter' like

protocols that aim to avoid ligase bias. (Default: remove3pBases=0)

● removeBarcode=<int>: eliminates the first <int> bases from the 5' end of the

read (default: removeBarcode=0)

3.3.4 UMIs (Unique Molecular Identifier)

● umi=[umi code]: This parameters allows to take into account different UMI

(Unique Molecular Identifier) designs.

o Fragment - Adapter - UMI design (like Qiagen): umi=3pA<INT>
(example for Qiagen standard would be umi=3pA12)

o Fragment-UMI-Adapter design: umi=3p<INT>

Differences between umi=3pA<INT> and umi=3p<INT>.

Preprocessing steps for umi=3pA<INT>:

o Detect the adapter given with the parameter adapter= using the

adapter trimming parameters (see 3.3.2)

o Eliminate the whole adapter sequnce given by adapter=

o extract the UMI sequence (length <INT>) that starts directly 3’ after

the adapter sequence generating a new read that consist only of

FRAGMENT-UMI

o Group the reads generating unique read sequences & Read Count

o Eliminate the UMI from the reads to generate the input reads (each

FRAGMENT-UMI) sequence is only represented once.

Preprocessing steps for umi=3p<INT>:

o Trimm off the adapter from the reads adapter trimming parameters

(see 3.3.2). The resulting read is FRAGMENT-UMI

o Group the reads generating unique read sequences & Read Count

o Eliminate the UMI (the length is given with <INT>) from the reads

to generate the input reads (each FRAGMENT-UMI) sequence is

only represented once.

3.3.5 Preprocessing: Length and count thresholds

● maxReadLength=<int>: the maximum length of a input read (filters out all

reads that are longer than <int>) (by default this filter is not applied)

● minReadLength=<int>: the minimum read length for a input read (filters out

shorter reads) (default: minReadLength=15)

● minRC=<int>: the minimum read count of a read. Filter out reads with less read

count than <int> (default: minRC=1)

http://www.degruyter.com/downloadpdf/j/mngs.2015.2.issue-1/mngs-2015-0001/mngs-2015-0001.xml

3.3.6 Preprocessing: Quality control

qualityType=[min,mean]: Activates the filtering by quality. At most 'maxQfailure'

 nucleotides of a read can have Phred Scores below

a minimum. (minQ=20 by default). By default this

filter is not applied)

maxQfailure=<int>: the number of nucleotides that can have Phred Scores

 below the threshold (minQ=20).

minQ=<int>: the minimum PhredScore (default 20).

phred=<int>: the Phred Score codification (by default phred=33).

3.3.7 Mapping parameters

The following parameters are passed to the Bowtie aligner. For more information,

please see the Bowtie manual page

● noMM=<int>: the number of mismatches. (default: noMM=0)

● alignType=[n,v]: the alignment type; can be either 'n' (-n parameter in Bowtie,

i.e. alignType=n) or 'v' (-v parameter in bowtie, i.e. alignType=v). Note that

when setting 'v', the seed parameter will have no effect. Briefly, 'n' will perform

a seed alignment (only the first nucleotides are used for the alignment, i.e.

mismatches outside the seed region do not count). For example, to detect

isomiRs, 'n' must be used. On the other side, 'v' aligns the whole read, i.e. all

mismatches do count. (default: alignType=n)

● seed=<int>: the length of the seed (-l parameter in Bowtie). (default: seed=19)

● bowtieReportType=<String>: This parameter regulates the bowtie reporting

behaviour and must be given within single quotation marks on the command

line . The default combination 'bowtieReportType=–a –m' indicates that only

reads that map at most m times to the genome are reported. Note that all type of

parameters can be passed to bowtie, for example ‘-k’ would be another

possibility (see the bowtie manual for more details)

● bowtieReportCount=<int>: this parameter specifies the corresponding number

to the ‘bowtieReportType’ parameter. For example:

⮚ ‘bowtieReportType=-a -m’ && bowtieReportCount=20 would pass to

bowtie the following parameters ‘-a -m 20’

⮚ ‘bowtieReportType=-a -k’ bowtieReportCount=5 would pass ‘-a -k 5’

⮚ If all mappings should be reported, ‘bowtieReportType=-a ’

‘bowtieReportCount= ‘ needs to be specified on the command line

(with a space after the =)

● chunkmbs=<int>: “The number of megabytes of memory a given thread is

given to store path descriptors in –best mode” (from Bowtie manual): Default:

chumkmbs=<256>

http://bowtie-bio.sourceforge.net/manual.shtml

● bowtieAdd=<String>: A string that will be added to the bowtie command line.

In this way, any other parameters can be passed to Bowtie. Default:

‘bowtieAdd=--best --strata’

● microRNAmappingOrientation=<String>: This is a bowtie parameter: --nofw

(does not map to the forward strand) or --norc (does not map to the reverse

complementary strand). It is only applied in the microRNA profiling. This

parameter is applied to both, library and genome mode. By default this

parameter is not given on the command line and the mapping is performed

against both strands.

● libsmappingOrientation=<String>: This is a bowtie parameter: --nofw (does

not map to the forward strand) or --norc (does not map to the reverse

complementary strand). It is only applied to the libraries given by libs= . This

parameter is applied to both, library and genome mode. By default this

parameter is not given on the command line and the mapping is performed

against both strands

● tRNAmappingOrientation=<String>: This is a bowtie parameter: --nofw

(does not map to the forward strand) or --norc (does not map to the reverse

complementary strand). It is only applied to the tRNA library given by

tRNA= . This parameter is applied to both, library and genome mode. By

default this parameter is not given on the command line and the mapping is

performed against both strands

3.3.8 Profiling parameters

There are several parameters that influence the profiling of known elements.

● winUpMir=<int>: the upstream flanking for the detection of microRNAs

(default=<3>)

● winDownMir=<int>: the downstream flanking for the detection of microRNAs.

For example, if the (default=<5>)

Explanation of winUpMiR and winDownMiR: For example, hsa-miR122-3p maps to

the '+' strand of chr18 with start position 56118356 and end position 56118377. This

region is than extended adding the downstream and upstream flanking: From

(56118356-winUpMiR) to (56118377+winDownMiR). All reads that lie within this

region are assigned to the reference element (hsa-miR122-3p in this case).

● winUpLibs=<int>: Same as winUpMiR but applied to libs reference sequences.

Default winUpLibs=<0>

● winDownLibs=<int>: Same as winDownMiR but applied to libs reference

sequences. Default winDownLibs=<0>

● hierarchical=<boolean>: Apply a hierarchical classification. If

hierarchical=<true>, then the reads mapped to libs=<sequence library> are

removed from the input after each library so they cannot map again (like in

miRanalyzer). If hierarchical=<false>, than reads can map to different libraries.

Default: hierarchical=<true>

● base=<0,1>: for bed format input. base=1 means that the coordinates are 1-

based, base=0 means that the coordinates are 0-based (default: base=<0>)

● matureMM=<int>: Number of allowed mismatches between the genome and

the known mature microRNA (for the detection of the genome coordinates).

Default: matureMM=<0>

● hairpinMM=<int>: Number of allowed mismatches between the genome and

the known pre-microRNA (for the detection of the genome coordinates) Default:

hairpinMM=<0>

3.3.9 Detection of isomiRs

● isoMiR=<boolean>: Classifies and quantifies the isomiR distribution at the

microRNA and sample level. Default: isoMiR=<false>

● fullIsoStat=<boolean>: Writes out a full isoMiR stat (as a function of the

different species and 3p and 5p). Default: fullIsoStat=<false>

● isoLibs=<boolean>: Detect non-templated additions for the reference sequences

given by the libs= paramter. Default: isoLibs=<false>

● isomiRseed=<int>: This parameter marks the number of 5' nucleotides which

are not used to detect NTAs (non-templated additions). Default:

isomiRseed=<18>

● minRCiso=<integer>: minimum RC for isomiR profiling (if RC is smaller, this

RNA is not considered). Default: minRCiso=10

● nonRedundantisoMiRclass=<true,false>: true --> Perform a non-redundant

isomiR classification (each read belongs to only one isomiR class); false -->

each read can belong to different classes (like length variant and sequence

variant). Default: nonRedundantisoMiRclass=true

● minVarFreq=[0,1]: The frequency of a sequence variant is calculated as the

number of reads with the sequence variant divided by the total number of reads

covering the position. The parameter sets the minimum frequency (number

between 0 and 1) needed to report the sequence variant in the output. Default:

minVarFreq=0.1.

3.3.10 Output options

● graphics=<boolean>: if true, sRNAbench generates graphic files using

R/ggplot2. Default: graphics=<false>

● plotMiR=<boolean>: plot out the microRNA alignments to the hairpin folder.

Default: plotMiR=<false>

● plotLibs=<boolean>: plot out the alignments for the libraries (those given with

libs=). Default: plotLibs=<false>

● minRCplotLibs=<integer>: The minimum read-count in order to write out the

libs alignment file. Default: minRCplotLibs=<200>

● minRCplotMiR=<integer>: The minimum read-count in order to write out the

microRNA alignment file. Default: minRCplotMiR=<20>

● maxLenForSecStruc=<int>: The secondary structure is calculated if the length

of the reference sequence is below this threshold. Only applies if

plotLibs=<true> and the read-count of the RNA >= minRCplotLibs. Default:

maxLenForSecStruc=<200>

● tRNA=<String>: If a library from the genomic tRNA database is used, this tag

will summarize the tRNA mappings by codons. The value must be the same

library name set with the libs= tag.

3.3.11 Produce BedGraph output

● bedGraph=<boolean>: writes out a bedGraph file with the genome mappings.

(only in genome mode). Default: bedGraph=<false>

● bedGraphMode=<String>: Will generate several files: a bed file with the

regions that have continuous read coverage; a bedGraph file with both strands, a

bedGraph file for the forward strand, a bedGraph file with the reverse mappings

and a file with the chromosome sequence length (to ease the conversion of

bedGraph to bigWig). It can take to parameters: FA (the read count is fully

assigned to each position) or MA (multiple assignment adjusted), i.e. if a read

has read count 10 and maps to two positions, to each are assigned 10/2 = 5.

Default: bedGraphMode=FA

● bedGraphIntervals=<String>: This parameter allows to define several length

intervals. Each lenght interval will produce one bed graph file. The string must

have this format: Inteval1_start-Interval1_end:Interval2_start-Interval2_end .

For example: bedGraphIntervals=19-23:24-24:28-33 would generate 3 different

bed graph files, i) for reads with lengths between 19 nt and 23 nt, ii) for reads

with read length 24 nt, iii) for read with lengths between 28 and 33nt. Default:

parameter not set

3.3.12 Prediction of novel microRNAs

● predict=<boolean>: predict=true � The prediction is turned on. Default:

predict=false

● kingdom=<animal,plant>: the input data is from animal or plant in order to use

the appropriate prediction parameters. Default: kingdom=<animal>

● maxDistNovel=<int>: The maximal distance between the end of the putative

5p-arm microRNA and the start of the putative 3p arm microRNA. Default: not

set (the default values for animal (60) and plant (180) are used).

● novelName=<String>: The short name used for the novel microRNAs. For

example, hsa (human), mmu (mouse), rno (rat), etc. Default: novelName=<new>

● novelHomolog=<String>: the species that should be used to assign a name to a

novel microRNA that do have a homologous in the microRNA database

(determined by the seed sequence). For example:

novelHomolog=has:ptr:mmu:rno By default, all animal or plant species from

miRBase are used depending on whether kingdom is ‘plant’ or ‘animal’.

3.3.13 Make Genome Distribution statistics

● writeGenomeDist=<boolean>: writes out a mapping statistic as a function of

chromosome.

● splitToSpecies=<true,false>: true --> i) write out the reads that map to a given

index (genome assembly) in fasta format, ii) generate the read length

distribution. Default: splitToSpecies=true

● chromosomeLevel=<true,false>: true --> make the mapping statistics at a

chromosome level (and not at a genome level). IMPORTANT: in order to

generate the genome level statistics, the sequence ids of the chromosome

sequences must be 'manipulated' like: >chr1:hsa (chromosome 1 of homo

sapiens- hsa). This makes sRNAbench to use the 'hsa' tag for the statistics. If this

tag does not exist, chromosome level is used. Default: chromosomeLevel=false

● mainSpecies=<String>: If there is a genome assembly to which multiple

mapping reads (those that map with the same quality to more than one assembly)

should be assigned preferentially. Default: not used

● genomeDistunique=<true,false>: Only reads that map uniquely to one species

will be considered. Multiple mapping reads will appear in the statistics with

'mixed'. Default: genomeDistunique=false

● chrMappingByLength=<true,false>: Make chromosome statistics as a

function of read length. Default: chrMappingByLength=false

● chromosomes=<String>: A string that specifies the chromosomes that should

be analysed. The chromosomes are separted by ':'. Default: not used (all

chromosomes in index)

3.3.14 Program names

● RNAfold=<String>: The name of the RNAfold program. For example, if both

Vienna 2.0 and Vienna 1.8.5 or before are installed on the computer. Default:

RNAfold=<RNAfold>

3.4 sRNAbench feature and implementation

3.4.1 Analysis steps

Very briefly, sRNAbench can be used in two different modes: Genome mode and

Library mode (see below). Both modes share a common pre-processing step which

consists of i) adapter trimming, ii) quality control, iii) collapsing of all identical reads

into one unique entry assigning a read count (the number of times a given read was

obtained in the experiment). Note that for both ways, the analysis can be carried out in a

hierarchical (by default) or non-hierarchical or redundant way. Hierarchical means that

all reads that map to a given library are removed from the analysis and can therefore not

map again. In this mode, each read can map only to one annotation group. Both modes

share also the mapping order: 1) MicroRNAs (microRNA=), 2) putative homologous

(homolog=), 3) other libraries (libs=). Note that an unlimited number of libs= can be

used. They will be used in the order as they appear on the command line.

3.4.2 Genome mode

If a genome sequence is given at the command line (species=) than all reads are mapped

first to the genome. In a second step, the genome coordinates of the reference small

RNA annotations (microRNAs and those given by libs=) are determined. For fasta

annotations, those are mapped to the genome and the chromosomal coordinates are

retrieved in BED format. If the annotation input was given in BED format, the

corresponding coordinates are adopted directly.

3.4.3 Library mode

If no genome sequence is available, sRNAbench proceeds nearly identical to

miRanalyzer. Instead of mapping to the genome sequence, the reads are successively

mapped first to a microRNA annotation and after this to the libraries given as libs=.

3.4.4 Ambiguous mapping treatment

A general problem in all high-throughput sequencing experiments is how to deal with

ambiguously mapping reads. Ambiguous mapping can arise if i) several alternative

transcripts of one gene are given in the reference library or ii) the read maps with the

same quality to different genome loci. The first point is of particular importance in

mRNA-seq experiments in order to infer the correct expression values of the different

isoforms of a gene. For small RNA sequencing, the problem of different transcripts

from the same locus virtually does not exist, however several microRNAs have more

than one gene in the genome. In order to address this problem, sRNAbench generates

two different output files: i) a multiple assignment file – each read counts for all loci to

which it maps and ii) a single assignment file – each read is assigned only to one locus.

The single assignment expression files are generated starting from the multiple

assignments (for example mature_sense.grouped):

● The multiple assignment file is ordered by the read count in a descending way.

● The most frequent RNA maintains its expression value and all reads that map to

it are removed.

● From the second most frequent RNA to the last, in each step the remaining reads

that have been assigned previously to this RNA are summed and removed afterwards.

In this way, each read is assigned only once – out of the RNAs to which it maps with

the same quality, it is assigned to the most frequent one (based on the read count).

Figure 3 illustrates the result of this procedure. The mature microRNA hsa-miR-92a-3p

can be obtained from two genes, located on chromosomes 13 and X. In this example,

the read counts are 19620 and 19248 respectively, while the corresponding single

assignment read counts are 19620 and 35. This means that all ambiguously mapping

reads are assigned to the locus on chromosome 13 leaving a single assignment read

count of 35 for the mature microRNA located on the X chromosome. Note that these 35

reads do map to this locus in an unambiguous way, i.e. they map with higher quality to

the X chromosome than to chromosome 13. In this way, the number of uniquely

mapped reads can be calculated. The locus on the X chromosome had a total read count

of 19248, out of which 35 mapped exclusively to this locus. Therefore we can infer that

19248-35=19213 reads mapped to both loci. This allows us finally to conclude that

19620-19213 = 407 reads map exclusively to the locus on chromosome 13. Note that

these numbers could mean different things: i) the microRNA is transcribed from

chromosome 13 and the 35 exclusively mapping reads from the X chromosome are

obtained due to sequencing errors or ii) the microRNA is transcribed from both loci, but

at much higher levels from chromosome 13. In either case, the single assignment file

might serve in some cases as starting point for further investigation. In this concrete

example it shows that the locus on chromosome 13 is very likely the important one.

Figure 7: Comparison between multiple and single read assignment.

The generation of the non-redundant files is performed in a strict order. First, the

‘sense’ files have preference over the ‘antisense’ files. This implies that a read that

maps to both, the sense and the antisense strand of a given library will be always

assigned to the sense strand. Therefore, the single assignment antisense expression files

count only ‘true’ antisense reads.

In the same line, the single assignment files of mature microRNAs have preference over

the pre-microRNA files (‘hairpin’). This implies that the single assignment pre-

microRNA expression files only contain those reads that mapped to the precursor

sequence but not to the corresponding mature microRNAs. Those reads can correspond

to unannotated mature sequences (mostly for those microRNAs that only have one arm

annotated), loop sequences, degradation products or atypical cleavage products.

The methods used to generate single assignment files depend on the order in the

multiple assignment file. This order might change between replicates and conditions.

Therefore those files should not been used for differential expression analysis.

3.4.5 IsomiR/isoRNA detection and classification

Most mature microRNAs do not only exist in their canonical form in the cell, but a high

number of different sequence variants can be reproducibly detected. Sequence variants

include 5’ and 3’ trimming and extension, non-templated additions (enzymatically

addition of a nucleotide to the 3’ end, i.e. adenylation, uridylation).

Non-templated additions frequently do not match the genome or the pre-microRNA

sequence and would therefore cause mismatches in the alignment. In order to not

discard those cases, the Bowtie seed alignment option is used. This option scores only

the first L nucleotides (L=20 by default) and therefore does not take into account the

mismatches at the 3’ end of the read caused by the post-transcriptionally added

nucleotides.

In order to detect isomiRs, sRNAbench, i) maps the reads to the genome or pre-

microRNA sequences using the Bowtie seed option, ii) determines the coordinates of

the mature microRNAs , iii) clusters all reads that map within a window of the

canonical mature microRNA sequence (see ‘microRNA expression profiling’), iv)

applies a hierarchical classification schema which is described below.

Frequently, a single read can have more than one modification compared to the

canonical microRNA sequence. For example, it can be both, 5’ trimmed and adenylated.

This fact opens two possibilities: 1) work with a redundant classification (allowing that

a read can belong to more than one isomiR class) or 2) apply a hierarchical

classification schema. sRNAbench works exclusively with a non-redundant

classification schema which is summarized in Figure 4.

Briefly, all reads assigned to a given mature microRNA are checked if they belong to

one of the following classes:

1. The read is identical to the canonical sequence (usually the miRBase entry).

2. The read has non-templated additions (added A, T(U), C or G), i.e. nucleotides

at the 3' end that do not match to the reference (template). By default,

sRNAbench starts at position 18 detecting the longest run of A’s, G’s, C’s or T’s

that do not match to the template.

3. The read starts and ends at the same position as the canonical sequence in the

pre-microRNA, but shows sequence variation (most likely due to sequencing

errors, but RNA editing events and SNPs might exist as well).

4. The read starts or ends at the same position as the canonical version. For this

case we can distinguish 4 groups:

a) 3' trimmed read: the read starts at the same position as the canonical

sequence (same 5' end) but it is shorter than the canonical sequence.

b) 3' extended read: the read starts at the same position as the canonical

sequence (same 5' end) but it is longer than the canonical sequence.

c) 5' trimmed read: the read ends at the same position as the canonical sequence

(same 3' end) but it is shorter than the canonical sequence.

d) 5' extended read: the read ends at the same position as the canonical

sequence (same 3' end) but it is longer than the canonical sequence.

5. The read does not coincide neither in 5' nor in 3' with the canonical sequence

(multiple length variant).

Note that this classification gives preference to non-templated additions compared to

other variants. This is because some NTAs might be biologically meaningful, i.e. at

least some microRNAs are stabilized by monoadenylation.

Figure 8: The hierarchical isomiR classification applied by sRNAbench.

sRNAbench does not only detect the canonical (miRBase) microRNA sequence but also

all isomiRs (sequence variants) Frequently, a single sequencing read can show different

post-transcriptional modifications. For example, it can be both, 3’ trimmed and

adenylated. In order to keep the classification schema simple, we applied a hierarchical

classification: For each read we test in this order if it belongs to one of the following

five classes:

1. The read is identical with the canonical sequence (miRBase entry); (label: exact)

2. The read starts and ends at the same position as the canonical sequence in the

pre-microRNA, but shows sequence variation (most likely due to sequencing

errors, but RNA editing events and SNP might exist as well).

3. The read has non-templated additions (added A, T(U), C or G), i.e. nucleotides

at the 3' end that do not match with the reference (template)

4. The read starts OR ends at the same position as the canonical version. For this

case we can distinguish 4 groups:

a) 3' trimmed read: the read starts at the same position as the canonical

sequence (same 5' end) but it is shorter than the canonical sequence

b) 3' extended read: the read starts at the same position as the canonical

sequence (same 5' end) but it is longer than the canonical sequence

c) 5' trimmed read: the read ends at the same position as the canonical

sequence (same 3' end) but it is shorter than the canonical sequence

d) 5' extended read: the read ends at the same position as the canonical

sequence (same 3' end) but it is longer than the canonical sequence

5. The read does not coincide neither in 5' nor in 3' with the canonical sequence

(multiple length variant)

3.4.6 Prediction of novel microRNAs

The prediction of novel microRNAs is based on a modified method described before in

the sRNAbench paper and the detection of novel plant miRNAs (Barley microRNAs).

Note that all thresholds that are mentioned below are described and motivated in

the sRNAbench paper, although the concrete number could have varied slightly.

The prediction can be divided in four steps: Clustering, candidate generation, candidate

evaluation and post-processing of accepted candidates.

Cluster Reads:

● The reads are mapped first to the genome sequence

● Reads that map to nearly identical positions in the genome are clustered into

 'read clusters' in the following way:

1. the reads are sorted by read count (read frequency)

2. the most frequent read is assigned to the first cluster (the coordinates of

the read cluster are determined by the coordinates of the most frequent

read)

3. for all other reads

▪ check if the read lies within a window defined by ClusterStart – 3

nt and ClusterEnd + 5 nt on the same strand (flankings were

added in order to assign all isomiRs to the same read cluster)

▪ if the read belongs to an existing cluster, the associated read

information (sequence and the read count) is added to the cluster

▪ if the read does not belong to an existing cluster, a new cluster

gets opened.

Generate Candidates:

After clustering all reads, read cluster pairs with distances of less than specified either

by the parameter ‘maxDistNovel’ or 180 nt for plants or 60 nt for animals are built.

Furthermore, the read clusters must not overlap having at least a distance of 3nt. The

hairpin sequence is defined by the following coordinates:

● Start: the start coordinate of the 5’ read cluster - 11 bp

● End: end coordinate of the 3’ read cluster + 11 bp.

For most bona fide miRNAs there should be two read clusters corresponding to the two

arms processed from the pre-microRNA sequence but virtually no other reads

overlapping the read clusters (stacks that correspond to the mature sequences).

Sometimes RNA secondary structure programs like RNAfold (used by sRNAbench) will

not calculate the correct structure if no adequate constraints are provided. Therefore, if

the two read clusters overlap only partially in the calculated secondary structure (low

number of bindings), we calculate the duplex formed by the two read clusters by means

of RNAcofold. Therefore, candidates are generated in two ways:

http://dx.doi.org/10.2478/mngs-2014-0001
http://www.biomedcentral.com/1471-2229/13/214
http://dx.doi.org/10.2478/mngs-2014-0001

● Extract the genomic sequence spanned by the two read clusters and calculate the

secondary structure by means of RNAfold

● Calculate the duplex between the two read clusters using RNAcofold

Evaluate the candidates:

A candidate is predicted as miRNA if:

● Dominant read cluster is located on the stem (does not fold back onto its-self)

● ‘Theoretical’ star sequence has reads (2 nt overlap allowing a deviation of 1 nt)

● The number of bindings in the duplex >= 14

● The 5’ homogeneity (fraction of reads that start at the same position as the

dominant read – 1 if perfectly homogeneous) must be above a minimum

threshold of 0.18 in animals and 0.1 in plants

● 5 out of the following 6 conditions must be met:

o 5’ homogeneity >= 0.52 (animals) or 0.5 (plants)

o Duplex bindings >= 17

o At most 3 clusters in the hairpin region (loop sequences, muRNA can

sometimes built additional clusters)

o ‘In cluster ratio’ (the fraction of reads that belong to either guide or

passenger strand) >= 0.94 (animal) o >= 0.85 (plants)

o ‘Dominant fraction’: the read count fraction of the dominant read >=

0.25 (animal) or 0.40 (plants)

o The read clusters that form the duplex are the two most expressed ones in

hairpin region (met always if only two clusters exist)

3.4.7 Sequence variants

sRNAbench implements the detection of putative sequence variants based on the

mismatches reported by bowtie1. For each position in the hairpin sequence, the

frequencies of the different mismatches are reported. A putative sequence variant is

reported if it is above the threshold specified by minVarFreq, a number between 0 and

1. In order to minimize the impact of sequencing errors, strict quality control should be

used (see section 3.3.6)

3.5 Output files

3.5.1 Summary and log files

results.txt:

The results of the different steps, i.e. preprocessing, mapping, and prediction of novel

microRNAs are summarized.

logFile.txt:

Different analysis steps are logged, but additionally possible warnings and errors are

written to this file.

3.5.2 Fasta files

Several fasta output files will be generated:

reads_orig.fa:

Reads after the preprocessing, i.e. after adapter trimming, length and quality filtering

and collapsing. The sequence name encodes the ‘read count’. The format is >ID#’read

count’.

>689339#8

AGATTATGAGATATGAGGGCA

Means that the read AGATTATGAGATATGAGGGCA has been obtained 8 times in

this sample.

reads.fa:

Reads that have not been mapped (either to the genome or any of the used libraries).

assignedReads.fa (in stat folder)

All reads that have been assigned to any of the annotations. In genome mode this means

‘genome mapped’ & ‘assigned’, while in library mode mapped and assigned is the

same.

unAssignedReads.fa (in stat folder)

Reads that could not be assigned to an annotation. In genome mode this means ‘genome

mapped’ but not assigned, and in library mode it means ‘unmapped’.

genomeMappedReads.fa (in stat folder)

Reads mapped to the genome (not written in library mode)

3.5.3 Expression profiling: *.grouped Files

Those files hold the expression profiling of a given annotation:

1. name: the name of the element

2. unique reads: the number of unique reads mapped to this element

3. read count: the total number of reads mapped to this element

4. read count (mult. map. adj.): each read is divided by the number of times that it

mapped (to different genome locations (genome mode) or sequences in the

library (sequence library mode))

5. RPM (lib): The Read Per Million normalized by the total number of reads

mapped to the library

6. RPM (total): The Reads Per Million normalized by the total number of genome

mapped reads (genome mode) or the total number of reads in the analysis

(sequence library mode)

7. coordinate string: The coordinate string depends whether the genome mode or

library mode was used: for genome mode the format is:

“chromosome,chromosome start,chromosome end,strand” and refers to genome

position of the annotation. Note that this coordinates are generated by

sRNAbench if the annotation input was fasta format, and it is taken from the

annotation file if this was in BED format. For ‘library mode’, relative

coordinates are given, i.e. for microRNAs the coordinates of the 5p/3p arms are

given.

8. RPM_adj (lib): The adjusted read count normalized by the total number of reads

mapped to the library

9. RPM_adj (total): The

3.5.4 Expression profiling: Single Assignment files: *_SA.grouped

These files are obtained from the *.grouped files and the read.annotation file (see

Ambiguous mapping treatment).

WARNING: this file should not be used for differential expression analysis. Please see

Differential expression based on *.grouped files how to use single assignment in

differential expression.

1. name: the name of the element

2. unique reads: the number of unique reads mapped to this element

3. read count(SA): the single assignment read count, i.e. the total number of reads

assigned to this element

4. read count(SA): the total number of reads mapped to this element (this read

count ignores whether some reads are mapped as well to other elements.

5. RPM (lib): The Read Per Million normalized by the total number of reads

mapped to the library

6. RPM (total): The Reads Per Million normalized by the total number of genome

mapped reads (genome mode) or the total number of reads in the analysis

(sequence library mode)

7. coordinate string: The coordinate string depends whether the genome mode or

library mode was used: for genome mode the format is:

“chromosome,chromosome start,chromosome end,strand” and refers to genome

position of the annotation. Note that this coordinates are generated by

sRNAbench if the annotation input was fasta format, and it is taken from the

annotation file if this was in BED format. For ‘library mode’, relative

coordinates are given, i.e. for microRNAs the coordinates of the 5p/3p arms are

given.

3.5.5 microRNA_species.txt (stat folder)

The distribution of microRNAs over the different species. This file is only written if

more than one species was used for profiling.

● Species: the short name of the species

● RC: the read count assigned to the given species

● Percentage: percentage of assigned reads

● RPM: read per million expression value

Figure 9: microRNA_species.txt file

3.5.6 isomiR output: mature.iso files

This file holds the isomiR composition of each mature microRNA. The file has the

following columns:

1. name: the name of the mature microRNA

2. pre-microRNA: the name of the precursor sequence

3. RC: the read count of the mature sequence (canonical sequence and all

isomiRs)

4. UR: unique reads mapped to the mature sequence (canonical sequence and all

isomiRs)

5. RPM (lib): The Read Per Million normalized by the total number of reads

mapped to the library

6. RPM (total): The Reads Per Million normalized by the total number of genome

mapped reads (genome mode) or the total number of reads in the analysis

(sequence library mode)

7. arm: the arm - either 3p or 5p

8. isoString: this string holds all values for all detected isomiRs. The values for the

different isomiR types are separated by '|'. For decoding the string please see

next paragraph.

o nta#BASE_RC: all non-templated nucleotide additions. For example:

nta#A_9568, means that 9568 reads in the sample do present one or more

3' terminal As which are not present in the reference sequence (either

genome or miRBase hairpin sequence)

o nta#BASE#ADDITIONS_RC: non-templated nucleotide additions of a

given length. For example: nta#T#1_125 , means that 125 reads present

mono-uridylation at its 3' end (1 U added which is not present in the

reference sequence) .

o lv5p_RC: 5' length variants .For example, lv5p_862 means that 862 reads

do show any type of 3' length variation.

o lv3p_RC: 3' length variants. lv3p_222835 means that 222835 reads do

show any type of 3' length variation.

o mlv_RC: Multiple length variants

3.5.7 canonical.txt

This file holds the expression values of the canonical microRNA sequences (as defined

by the annotation). Only the exact sequences are profiled. The file is only written if

isoMiR=true is set. The format is the same as in the grouped files.

3.5.8 isomiR annotation

The file microRNAannotation.txt assigns to each read mapped to a known microRNA an

isomiR related label.

● read: the read sequence

● name: the name of the mature microRNA

● preMicro: the name of the pre-microRNA

● isoClass: the assigned isomiR class

● NucVar: the observed nucleotide variation (reference > sample)

● read count: the read count

● RPM library normalized

● RPM total input (or total genome mapped) normalized

3.5.9 Per mature microRNA isomiR summary (isomiR_summary.txt)

● name: name of the mature microRNA

● UR: number of unique reads

● RC: read count

● RPM(total): Reads Per Million normalized to all preprocessed input (library

mapping)/genome mapped (genome mode) reads

● RPM(lib): Reads Per Million normalized to all reads mapped to a known

microRNA

● Canonical_RC: Read count of the canonical sequence

● NTA(A): number of reads with a non-templated A addition

● NTA(U): number of reads with a non-templated U addition

● NTA(C): number of reads with a non-templated C addition

● NTA(G): number of reads with a non-templated G addition

● lv3pE: number of reads with 3' length extension (longer than the canonical

sequence)

● lv3pT: number of reads with 3' length trimming (shorter than the canonical

sequence)

● lv5pE: number of reads with 5' length extension (longer than the canonical

sequence)

● lv5pT: number of reads with 5' length extension (shorter than the canonical

sequence)

● mv: number of reads classified as multiple length variants

3.5.10 Sample isomiR summary

Two files: “isomiR_NTA.txt” and “isomiR_otherVariants.txt” summarize the isomiR

statistics for NTA (non-templated additions) and several length variants.

● name: the name of the isomiR type:

o A (adenine addition), C (cytosine addition), T (U/T addition), G (G

addition),

o lv5pT: 5' trimmed

o lv5pE: 5' extended

o lv5p: 5' length variant (lv5pT + lv5pE)

o lv3pT: 3' trimmed

o lv3pE: 3' extended

o lv3p: 3' length variant (lv3pT + lv3pE)

o mv: multiple length variants

● totalRC: the number of reads mapped to microRNAs

● NTA_count: the number of reads that belong to a given isomiR type

● wMean: the weighted mean (NTA_count/totalRC)

● mean: the mean isomiR ratio of the sample. For each microRNA, an isomiR

ratio is calculated like: (number of reads belonging to a certain isomiR type) /

(total number of reads mapped to the microRNA).

● stdDev: standard deviation of the mean.

3.5.11 Sample summary as a function of NTA length

‘isomiR_lenNTA’ (located in the stat folder) lists the non-templated additions as a

function of the number of added nucleotides.

● length: the number of added (non-templated) nucleotides

● RC_A: number of reads with a non-templated A addition of a given length

● weighted_mean_A: the weighted mean of A-NTA’s (NTA_count/totalRC)

● mean_A: the mean isomiR ratio of the sample. For each microRNA, an isomiR

ratio is calculated like: (number of reads belonging to a certain isomiR type) /

(total number of reads mapped to the microRNA). In this case it is the number of

reads that have a certain number of A’s added.

● stdDev_A: the standard deviation of mean_A

Other columns are for T (U), C and G additions and the meaning is as explained above

for A additions.

3.5.12 The “reads.annotation” file

This file represents a summary at the read level, i.e. each read is listed individually

together with all the annotation to which it mapped. It contains the following columns:

1. read sequence

2. the read count

3. RPM: The Reads Per Million normalized by the total number of genome

mapped reads (genome mode) or the total number of reads in the analysis

(sequence library mode)

4. Classification group. It consists of the name of annotation file (for libs=) or

hairpin/mature (microRNAs from miRBase) plus the mapping orientation (sense

or anti-sense). The format is “AnnotationGroup#Orientation”. Note that the

name can be “mixed” if the read maps to several different annotations.

5. Mapped Annotations: This column contains all annotations to which the read

maps. The format for the mapping to one element is:

“AnnotationGroup#AnnotationName#Orientation#CoordinateString”. As a read

can map to several different annotations, those are separated by '$'. For example,

“hv_030312_v2_18#MLOC_55934.3#antisense#s$hv_030312_v2_18#MLOC_

55933.2#sense#s” means that i) the corresponding read mapped to twice (two

annotation strings separated by one dollar sign), ii) the read maps one gene in

sense and another one in antisense direction, iii) “hv_030312_v2_18 is the name

of the library (AnnotationGroup) given at the common line like this libs=, iv)

The gene names (AnnotationName) are MLOC_55933.2 and MLOC_55934.3

3.5.13 Read Length distribution

Several files are written summarizing the read length distribution:

● readLengthFull.txt: length distribution without setting any thresholds like

minimum length or minimum read count.

● readLengthAnalysis.txt: distribution of the reads that are used for the analysis.

● assignedReads.readLen: the read length distribution of all assigned reads, i.e.

those reads that could be assigned to any of the used annotations.

● unAssignedReads.readLen: in genome mode: the reads that have been mapped

to the genome but could not be assigned to an annotation; in library mode: the

reads that could not be mapped (assigned) to any of the annotations

● genomeMappedReads.readLen: the read length distribution of genome

mapped reads (this file does not exist in library mode)

● readLength folder: the length distribution of reads mapped to the different

annotations, i.e. mature.readLen holds the read length distribution of reads

assigned to a mature microRNA (guide or passenger strand)

All files have the following columns:

1. Read Length: the length of the sequenced RNA fragment/molecule

2. UR: the number of unique reads of a given length

3. Percentage_UR: the percentage of unique reads of a given length

4. RC: the read count that corresponds to a given length (sum of all reads with a

given length)

5. Percentage_RC: The percentage of the total read count picked up by a given

length

6. RPM: The Reads Per Million expression value as a function of read length

Note that there might be slight differences between both files due to the quality criterion

which is not applied in the 'readLenghtFull.txt'

3.5.14 Distribution format

Several files do have the same format, as the mappingStat.txt,

mappingStat_sensePref.txt or genomeDistribution.txt.

● name: The name of the library and the mapping orientation (sense, anti-sense)

coded into a string like this: 'library#orientation'

● UR: number of unique reads assigned to the ‘category’

● URperc: the percentage of unique reads assigned to the category

● RC: total read count assigned

● RCperc: the percentage of reads assigned to the category

● RPMassigned: The read per million normalized by the total number of assigned

reads, i.e. those that could be mapped (library mode) or mapped/assigned

(genome mode) to any of the RNA elements in the libraries. This column should

sum 1,000,000

● RPManalysis: The reads per million normalized by the number of input reads

(library mode) or number of genome mapped reads (genome mode)

3.5.15 RNA distribution summary

A summary of the mapping process can be found in the mappingStat.txt and

mappingStat_sensePref.txt files. Frequently, a read maps to several annotations, both in

sense and antisense direction. In the ‘sensePref’ file, preference is given to the sense

orientation. This means if a read maps both, in sense and antisense orientation, only the

sense mappings are considered for the statistics. The format is explained here.

3.5.16 The genome distribution: genomeDistribution.txt

The small read distribution over the different species. The mapping to the genome is

generally done specifying a maximum number of allowed chromosome positions to

which a read can map. If this number is exceeded, than the read is labels as ‘high-

redundant (HR)’. Those reads are not used for the profiling but they are used for the

genomeDistribution.txt file. For example in Figure 7 it can be seen that 1959 reads are

highly redundant (orange), i.e. they map to more than 10 position in the chromosome 22

(10 is the default value which can be changed with the bowtieReportCount parameter).

Furthermore, it can be seen that 23% of all reads do map to the human herpesvirus type

8 (NC_009333) – marked in green.

The format is explained here.

Figure 10: the genomeDistribution.txt read with Excel

3.6 RNA distribution as a function of length

rnaComposition_readLength_sensePref.txt and rnaComposition_readLength.txt give

the distribution of RNA type frequencies as a function of read length.

The format gives in the first column the read length and in all other columns the % that

picks up a certain RNA type of this read length. All rows need to sum 100%. This file

allows to answer questions like for example: which percentage of 33nt long reads are

mapped to tRNAs?

3.7 Alignment files - processing pattern

The visualization of the alignments to the pre-microRNA sequences can be found in the

hairpin folder (those to other libraries, within a folder with the library name). All reads

that map to the sequence are shown and the Drosha/Dicer (DLC-1) processing pattern

can be studied. The alignment files have extension ‘align’ (see Figure 8).

Figure 11: Visualization of the read alignments to the human microRNA has-mir-

30a.

For each ‘align’ file, a corresponding ‘countArray’ file is written

position uniqueCount percUnique totalCount percTotalCount

 rpm_lib countStartEnd rpm_startEndPosition

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.7.1 Novel microRNAs

If the predict=true parameter was set, sRNAbench will predict novel microRNAs. The

results are written into the novel folder and into 3 files: novel.txt, mature_novel.fa

(fasta file with mature sequences) and hairpin_novel.txt (fasta file with pre-microRNA

sequences).

The novel.txt file has the following format:

name: the name of the novel microRNA, which can be either the name of a

known microRNA family (in this case the microRNA is known, but novel in the

species) or a name like xxx-novel-number.

seqName: the chromosome/scaffold/contig name

start: start coordinate of the novel pre-microRNA in the

 chromosome/scaffold/contig

end: end coordinate of the novel pre-microRNA

strand: the strand

total RC: the total read count of the pre-microRNA

5pSeq: the mature microRNA sequence of the 5' arm

5pRC: the read count of the mature 5p (only the “canonical” sequence,

 no isomiRs are counted)

3pSeq: the mature microRNA sequence of the 3' arm

3pRC: the read count of the mature 3p (only the “canonical” sequence,

 no isomiRs are counted)

duplexType: in the current version (May 2017) this can be only duplex

 (Dicer/Drosha pattern between the two most expressed read

 clusters of the pre-microRNAs). Likely in the future other types

 will be added (non-canonical biogenesis pathways)

isHairpin: can be true (the pre-microRNA has a strict hairpin structure) or

 false (the pre-microRNA does not have a strict hairpin structure)

hasHomolog: the novel microRNA does have putative homologs in other

 species

hairpinSeq: the sequence of the hairpin sequence (pre-microRNA +

flankings)

duplexQuality: exact=strict 2nt overhangs, lax= at least one of the extremes has

either 1 nt or 3 nt overhang

detectionType: RNAfold: the duplex can be found in the secondary structure

predicted by RNAfold; RNAcofold: the duplex cannot be found in secondary

structure but RNAcofold predicts a Drosha/Dicer duplex.

mature5pFluctuation: the fraction of reads that start at the same position as the

mature sequence (the canonical microRNA sequence)

InClusterRatioSense: the fraction of reads that are members of the two most

expressed clusters or are a putative loop sequence.

Dominant2AllRatioMature: the ratio between the dominant read (the canonical

sequence) and the sum of all reads of a cluster.

matureBindings: the number of bindings in the duplex (between 5p/3p arms)

top2ClusterAreGuideAndStar: the two most expressed clusters correspond to the

guide and passenger sequence.

noCluster: the number of read clusters in the hairpin sequence (should be normally

2; one corresponding to guide and one to passenger strand)

outOf6Fulfilled: the number of flexible conditions (see the 6 previous columns) that

are fulfilled.

3.7.2 Putative sequence variants: microRNA_seqVariants.txt

● Name: the name of the hairpin sequence

● Type: the sequence variant (like T>A: T in reference and A in

 read)

● RC: the total read count of the putative sequence variant

● noReads: the number of different unique reads that show the sequence

 variant

● RCpos : the total read count at the given position

● Perc: the fraction: RC/RCpos

● Position: the position in the hairpin sequence

3.8 Tips and tricks

3.8.1 Overwrite the mapping parameters

It is possible to “overwrite” the global mapping parameters given at the command line

(noMM=, seed=, alignType= and bowtieReportType= bowtieReportCount=) for some

analysis steps. This is mainly useful for the 'Library mode'. The parameters can be

changed by adding a parameter string to the library name (or to the homologous

microRNAs): For example:

snoRNA.fa#1#20#n#-m#20

would cause sRNAbench to align the reads to the library named snoRNA.fa with

noMM=1, seed=20, alignType=n and bowtieReportType=-m bowtieReportCount=20.

Therefor in the bowtie parameters this will appear –n 1 –l 20 –m 20

homolog=mmu:rno:mmu:ptr#2#20#v#-a

will make sRNAbench to align the reads to the putative homologous microRNAs from

human (hsa), mouse (mmu), rat (rno) and chimp (ptr) with parameters: noMM=2

alignType=v –a (all –best –strata alignments will be reported).

Note that, i) for alignType=v, the seed= parameter is ignored, and ii) the global

parameters are only temporarily overwritten. For the next lib= library, the global

parameters will be applied unless they are overwritten again.

3.8.2 Using bowtie indexes as libraries in genome mode

This possibility makes sense only if the library contains spliced sequences. The

previously genome mapped reads are mapped again to the provided bowtie index. The

mapping parameters to the bowtie index can be overwritten. Let's analyze the following

example:

java -jar sRNAbench.jar input=SRR069835_part.fastq species=chr22 microRNA=dme

dbPath=”path to database” adapter=CTGTAGGCAC noMM=0 seed=18 alignType=n

libs=refSeq#0#20#v#20

First, all reads are mapped to the genome with global parameters (1 mismatch, seed

length 18, seed alignment mode). The genome mapped reads (that do not map to

microRNAs) are then mapped to the bowtie index refSeq with noMM=0 and

alignType=v. In this way, for all bowtie indexed libraries, stricter parameters can be

chosen.

3.8.3 Multi-species analysis

A new feature in sRNAbench is the possibility to analyze several species at the same

time. This is especially interesting when infected cells or host/parasite interactions are

analyzed. However, if the different genomes in the analysis share “chromosome names”

(like chr1 in human and mouse genome), the genome sequences needs to be

manipulated first. For example in the web-server, we added to each sequence name the

short species name. In this way, chr1:hsa (human) could be distinguished from

chr1:mmu mouse. A simple command can add this information to the genome

sequences prior to built the bowtie indexes and the seqOBJ zip file.

cat hg19.fa | awk '{ print $1”hsa” }' > hg19_mp.fa

3.8.4 Construction of shared libraries

Sometimes, many different RNA species are annotated in a single file. If the

classification is known, sRNAbench can use them for the summary files. Briefly, the ID

of the sequences should be separated by the class name by a ':'. For example

'>NR_046235:ribosomal_RNA'. We implemented several helper tools that can generate

this prepared annotation files from primary Ensembl and NCBI annotation files (see

also the sRNAbench helper tools)

3.8.5 Prediction of novel microRNAs

In general, we recommend to predict the novel microRNAs in a separate run and with

strict parameter settings: noMM=0 alignType=v minRC=2

3.8.6 profile tRNAs

sRNAbench has some additional features when used with tRNA libraries from the

Genome tRNA database (see also the sRNAbench helper tools) . Before using it with

sRNAbench, the description field should be removed from the fasta file. In Linux, this

can be done easily by means of this command: cat eukaryotic-trnas.fa | awk '{ print

$1 }' > eukaryotic-trnas_woDesc.fa being eukaryotic-trans.fa the input file.

When analyzing this tRNAs, another parameter can be set at the command line:

tRNA=”name of the tRNA library”. An additional file will be generated at an anti-

codon level.

4 sRNAde: Differential expression

The sRNAde program can be used in two different ways.

i. It can be applied to a user generated expression matrix

ii. It takes a number of individual sRNAbench runs as input. For the runs the

relation between the samples, i.e. defining the experimental groups must be

provided.

Independently of the input type, two main results are generated. First, heatmaps are

calculated using Hierarchical Clustering (implementation: hclust for R, parameters

method=”complete”) which allows the user to visualize the clustering of the samples

and to detect outlier samples. Second, the differential expression is assessed using 3

frequently used programs: edgeR, DESeq and NOISeq. Additionally, the program also

generates a consensus differential expression file which gives the user the possibility to

increase the stringency using only those microRNAs/sRNA that have been detected as

differentially expressed by more than one method.

If sRNAbench output is used as input, additional analysis types are available. For

example, the module generates a summary of sequencing, adapter removal, genome

mapping statistics, isomiR differential expression, RNA distribution summaries, and

many more.

The differential expression can be launched by means of the next command:

http://bioinfo5.ugr.es/sRNAbench/sRNAbenchParser.php
http://gtrnadb.ucsc.edu/
http://bioinfo5.ugr.es/sRNAbench/sRNAbenchParser.php

java -jar sRNAde.jar input=<path to input folders> output=<name of the output

folder> grpString=<the names of the input samples>

4.1 Mandatory parameters: sRNAbench input

● input=<String>: the path to the sRNAbench output folders of the individual

sRNAbench runs. Please note that all sample output folders must be within the

same directory. For example, if the default output was used:

input=$sRNAtoolboxDB/out

● output=<String>: the path of the output folder.

● grpString=<String>: the group string must contain the names of the different

sRNAbench output folders in the following way: f1_1:f2_1#f1_2:f2_2 being

f1_1 the first folder (sample) of the first group (controls in a case/control study)

f2_1 the the second folder of the first group, f1_2 the first folder of the second

group (cases) etc

4.2 Mandatory parameters: expression matrix input

● input=<String>: the path to the expression matrix (for the format, please see

below in this section).

● output=<String>: the name of the output folder. The output folder will be

placed in the directory given with input=the path of the output folder

● matrixDesc=<String>: description of the matrix samples, i.e. assign an

experimental group (a label like ‘cancer’, ‘control’ etc.) to each sample. The

string for an experimental setup with 4 control samples and 4 cancer samples

would be: control,control,control,control,cancer,cancer,cancer,cancer

Expression matrix format:

Figure 12: format of the expression matrix (from
http://bioinfo5.ugr.es/static/WebManual_sRNAtoolbox.pdf)

Important: If with input= a file is given, then automatically the differential expression is

launched treating this input data as expression matrix. This analysis includes both, the

differential expression and a cluster analysis. Some more parameters exist for this

analysis: General parameters for differential expression and heatmaps.

4.3 Additional parameters for sample descriptions

http://bioinfo5.ugr.es/static/WebManual_sRNAtoolbox.pdf

● sampleDesc=<String>: The user can provide a name for each sample (those

names will appear in the output files and graphics. For example

sampleDesc=healthy01:healthy02:cancer01:cancer02. The order of the

samples is the same as defined by grpString but note that sampleDesc

should not contain '#' .

● grpDesc=<String>: If not set, the groups will be named 'grp'. The user can

give names to the groups like healthy#cancer by means of a string that

contains as many group separators '#' as defined with grpString=

4.4 Differential expression based on *.grouped files

● diffExpr=<boolean>: Perform differential expression analysis. Default:

diffExpr=<false>. Currently, at least two samples must exist per condition

otherwise only the RPM (Read Per Million) normalized expression matrix

will be generated.

● diffExprFiles=<String>: The files that should be used for differential

expression analysis. Note that this file needs to contain a column with the read

count (needed by the programs like edgeR or DEseq and that several files can be

used separating the file paths by '|'.

● minRCexpr=<Integer>: The minimum read count that ALL samples of at least

one group (condition) must have so that the entity (microRNA/gene etc) is

included into the read count expression matrix (input for edgeR, DEseq and

NOIseq). Note that the read count is expected to be in the third column (like in

the 'grouped' files from sRNAbench). Default: minRCexpr=1.

● minRPMexpr=<double>: The minimum read per million (RPM) expression

value that ALL samples of at least one group (condition) must have so that the

entity (microRNA/gene etc) is included into the expression matrix (the RPM

expression matrix is calculated from the read count matrix. (Default:

minRPMexpr=1)

● DEmode=[a,b]: If a entity (microRNA or gene name etc) is encountered twice

in the data: a) will only use the expression value of the most frequent while b)

will sum up the expression values using the column of adjusted expression

values (column 4 in the 'grouped' files from sRNAbench) . Default DEmode=b

● genomeFiles=<true,false>: true --> use the chromosome string (from the

grouped files) for 'hashing', i.e. calculate differential expression for each loci at

which a microRNA/gene is located. This parameter makes only sense for

sRNAbench output files when the genome mode was used. (Default

genomeFiles=false)

● makeSingleAssignDE=<Boolean: true � The differential expression is

calculated using the 'single assignment' mode, i.e. a multiple mapping read is

only assigned once - to the most expressed loci. The most expressed loci is

determined over all used samples. Note, if single assignment is used than the

name of the annotation must be selected (annotName= ; see next parameter).

Default: makeSingleAssignDE=false. See Ambiguous mapping treatment .

● annotName=<String>: The name of the library for which the single assignment

differential expression should be calculated, i.e. the names of the library in the

reads.annotation file. For example, for microRNAs annotName=mature or for

tRNA fragments annotName=tRNA (or annotName=hg19-tRNAs (if libs=hg19-

tRNAs was given). Important: right now only ‘sense’ mapping reads are

considered.

IMPORTANT: the user should not use the Single Assignment files for the differential

expression analysis. (those with _SA in its name). For single assignment differential

expression the makeSingleAssignDE=true should be used.

i. the diffExprFiles are used to generate a read count expression matrix

ii. the read count matrix is ordered by read count

iii. in decreasing read count order, all reads are assigned to one element and then

eliminated to avoid multiple assignment.

4.5 Make summary files

● stat=<true,false>: A study summary will be caclulated for a given file. This

analysis will: i) summarize the information of one column of a given file over all

samples, ii) generate an 'expression matrix' like output format. The first column

holds the names of microRNAs/genes etc. and all other column represent the

values in the different samples. iii) calculate per-group (mean and std. deviation)

and between group statistics (t-test).

● statFiles=<String>: The files that should be used for stat=true analysis. Note that

several files can be used separating the file paths by '|'

● colData=<int>: The column that should be used for stat=true. Note that his

number is 0-based, i.e. the first column will be colData=0.

● minRCdata=<double>: The minimum value that all samples of at least one

group must fulfil.

● folderData=<String>: If the file that should be summarized is located within a

subfolder of the sRNAbench output folder, the name of this folder needs to be

given here. If no folder is given, the file given by (statFiles=) should be in the

root of the sRNAbench folders.

4.6 IsomiR analysis

There are different ways to analyze the isomiR generation among different conditions.

The comparison can be performed at a microRNA level (iso=true) or at the sample level

(isoSummary=true). isoSummary=true will summarize the files isomiR_NTA.txt and

isomiR_otherVariants.txt and does need not any additional parameters.

● iso=<true,false>: true � isomiR analysis, i.e. comparison of isomiR ratios

between groups. This analysis will: i) calculate the isomiR ratios (either (isomiR

type RC/ total RC)) or (isomiR type RC/ canonical RC) for all microRNAs and

samples. ii) calculate the isomiR ratios which are significantly different between

two groups.

● isoFile=<String>: The file that should be used for isomiR analysis. Default

isoFile=mature.iso

● minRCiso=<int>: The minimum read count of the microRNA so that the

isomiR ratios are calculated. Default: minRCiso=10

● isoCanonical=<true,false>: true --> calculate additionally the isomiR ratios as

(isomiR type RC / canonical RC). Default: isoCanonical=false

4.7 isomiR analysis at a read level

● readIso=<true,false>: true � This analysis will: i) generate a expression

matrix using the column specified by colReadIso; ii) calculate the differential

expression (if colReadIso=5)

● colReadIso=<5,6,7>: The column that should be used (from the

microRNAannotation.txt file). Default: colReadIso=5 (read count); Others: 6

(RPMlib), 7 (RPMtotal)

● minExprReadIso=<int>: The minimum value found in the column (defined by

colReadIso=) that each sample in at least one group (condition) must

accomplish. Default: minExprReadIso=1

● detectIsoMiRs=<String>: A string that encodes the names of all isomiR types

that should be analyzed. Note that the names of the different isomiR types must

be separated by '|' Default:

"nta#A|nta#A#1|nta#T|nta#T#1|nta#C|nta#G|lv5p|lv3p"

4.8 Make expression matrix from fasta files

This function can be used to make expression matrixes out of every fasta file produced

by sRNAbench.

● mappedReadsDE=<true,false>. True � This analysis will: i) generate an

expression matrix using the read counts from the fasta files (like

>ID#read_count).ii) calculate the differential expression using edgeR, DEseq

and NOIseq. Default: mappedReadsDE=false

● minRCreadLevel=<int>: The minimum read count that each sample in at least

one group (condition) must accomplish. Default: minRCreadLevel=10

● fastaFiles=<String>: The fasta file(s) that should be used. Several can be defined

separating by '|'.

● folderData=<String>: Defines the subfolder within the sRNAbench output folder

were the file is located. By default, no subfolder is defined and the fasta file is

expected within the root of the output folder.

4.9 Analyse annotated reads

Analyse the annotated reads at a read level.

● readLevel=<true,false>: true � This analysis will: i) generate an expression

matrix using the annotated read counts from reads.annotation file; ii) calculate

the differential expression using edgeR, DEseq and NOIseq.

● minRCreadLevel=<int>: The minimum read count that each sample in at least

one group (condition) must accomplish. Default: minRCreadLevel=10

● readLevelExprCol=<1,2>"," The column that should be used to generate the

expression matrix: 1 --> RC; 2 --> RPM (total). Default: readLevelExprCol=2

● annotCol=<3,4>: The annotation level that should be used: 3 =

groups#orientation; 4 = group#name#orientation. Default: annotCol=4

4.10 General parameters for differential expression and

heatmaps

Note that this parameters will influence both, and sRNAbench differential expression

analysis and user input expression matrix analysis.

● fdr=<double>: false discovery rate for DEseq and edgeR. Default: fdr=0.05

● noiseq=<double>:corresponding noiseq parameter. Default: noiseq=0.8

● hmPerc=<double> = 1: the percentile of expression that should be used for the

heatmap. Default: hmPerc=1

● hmTop=<int>: if hmPerc = 1 then takee the (hmTop) top expressed

genes/microRNAs to generate the heatmap. Default: hmTop=50

● percentil =<double>: the percentil applied to expression matrix. Default

percentil =-1 (not applied)

● top=<int>:the top X entries from the expression matrix that should be used for

the DE analysis. Default: top = -1

4.11 Differential Expression output

4.11.1 “diffExpr=true” output

A number of output files will be generated. The base name of the files are:

“base name of corresponding grouped file”_minRCexpr_’DEmode’

For example, if mature_sense.grouped (default file) was used, the names will be

mature_sense_1_RCadj

As by default minRCexpr=1 and DEmode=b (the adjusted Read count is used).

The default output for a DE analysis with two groups (control and cancer) will produce

the following output files:

● mature_sense_1_RCadj_control_vs_cancer.xlsx: The output generated by

edgeR, DEseq and NOI-seq.

● mature_sense_1_RCadj.mat: the adjusted read count expression matrix which

is used as input for edgeR, DEseq and NOI-seq

● mature_sense_1_RCadj_totalRPM.mat: The normalized read count matrix

(normalized with the total number of reads)

● mature_sense_1_RCadj_libraryRPM.mat: The normalized read count matrix

(normalized with the number of reads mapped to the corresponding library –

microRNAs in this case)

● mature_sense_1_RCadj_TMM_normalized.tsv: the TMM normalized

expression matrix (generated by edgeR)

● mature_sense_1_RCadj_heatmap_perc0.87.png: the cluster analysis and

heatmap taking the top 50 microRNAs (percentile 87 here)

● mature_sense_1_RCadj_heatmap_perc0.87_median_normalized.png: the

cluster analysis and heatmap taking the top 50 microRNAs applying median

normalization (rest the median value)

4.11.2 “iso=true” output

The isomiR ratio can be defined in two different ways:

● Default: isomiR type read number / total read count of microRNA (canonical

read count plus all isomiRs)

● Activated by isoCanonical=true: isomiR type read number / canonical

(miRBase) read count

IsomiR patterns are analyzed for an *.iso file (isoFile=<String>) . The first step in the

analysis of the isomiR patterns consists in the generation of an isomiR ratio matrix. The

files have 'mat' extension and the name of the file indicates the analyzed isomiR type.

For example, iso_nta#T.mat indicates that this file holds the isomiR ratios for non-

templated additions of U/T. iso_nta#T_canonical.mat is the corresponding matrix for

the isomiR ratio based on the canonical read count.

*.ttest and *.sig files

*.ttest files do hold all comparisons, while *.sig files do hold only the statistically

significant isomiR ratio differences (after FDR correction). For each isomiR ratio

matrix, all possible comparisons are calculated (for two groups –> 1 comparison, for

three groups –> 3 comparisons, for four groups –> 6 comparisons, etc.). The

nomenclature is like before, adding the group numbers. For example,

iso_nta#T_1_2.ttest holds the ttest outcome for the comparison between the first and

the second group. The files have the following columns:

● microRNA: name of the mature microRNA

● mean_1: the mean isomiR ratio in first group

● var_1: the standard deviation of the isomiR ratios in first group

● mean_2: the mean isomiR ratio in the second group

● var_2: the standard deviation of the isomiR ratios in second group

● p: the exact p-value (t-test)

● FDR: the FDR corrected p-value

4.11.3 “seqStat=true” output files

The file sequencingStat.txt summarizes the sequencing statistics:

● sample: The name of the sample

● raw reads: number of raw input reads

● adapter cleaned: number of adapter cleaned reads

● reads in analysis: number of reads in analysis (applying length thresholds to

adapter cleaned reads)

● unique reads in analysis: number of unique reads in analysis (applying length

thresholds to adapter cleaned reads)

● genome mapped reads: number of reads mapped to the genome

● unique reads mapped to genome: number of unique reads mapped to the genome

5 sRNAblast (Docker)

sRNAblast can be used to further analyse unmapped reads. The program uses blastn to

align input reads against a BLAST database (nr database by default).

sRNAblast uses the sRNAbench input layer and therefore it accepts the same input files.

java -jar sRNAblast input=’reads_file’ output=’output_directory’ maxReads=100

5.1 sRNAblast parameters

Parameter Description

input=file
The path to the input file (supported formats: fastq,

read/count, fasta). This is the only mandatory parameter.

output=<folder>

The name of the oputput folder.

Default: output=/opt/sRNAtoolboxDB/out

maxReads=<int>

The number of top expressed reads that we will be

blasted. Default: maxReads=500

blastDB=<String>
The name of the blast database. The parameter can take

this values. Default: blastDB=nr

minIdent=<int>
The minimum identity for a blast result. Default:

minIdent=90 (90% sequence similarity)

maxEvalue=<int> The maximum E-value. Default: maxEvalue=2

word_size=<int>
The word size used for blast search. Default word_size=9

http://www.genebee.msu.su/blast/blast_faqs.html

5.2 sRNAblast output files

https://ncbi.github.io/blast-cloud/blastdb/available-blastdbs.html
http://www.genebee.msu.su/blast/blast_faqs.html

Figure 13 shows a typical sRNAblast output directory.

Figure 13: Content of typical sRNAblast output directory

5.2.1 Format of tax.out, speciesSA.out and species.out

Column description

species Name of the species or taxonomic level

RC The total number of mapped reads (might

be not an integer if multiple mapping

reads exist)

%RC The percentage of reads mapped to this

category

Note: By default, the NCBI remote database is used. That means that sRNAblast

needs nearly no local resources, BUT is rather slow.

A local blast can be used by adding remote=local to the command line. For this:

A local database needs to be created (how to create local

DB and available databases):

The environmental variable BLASTDB needs to be set

assigning the value of the directory with the blast database files. Type

‘echo $BLASTDB’ in the terminal, if no path is given back, add this to

your .bashrc

BLASTDB=/home/user/bl

astDB

export BLASTDB

6 miRNAconstargets

This program allows to calculate consensus miRNA target predictions, both in animals

and plantas.

In animals, 4 different methods are currently implemented: Miranda , TargetSpy, PITA

and a simple seed method (a target gets predicted if a seed match is detected in a

transcript)

6.1 Launch miRNAconstargets

For animals:

java -jar miRNAconsTargets.jar

or in the Docker:

miRNAconsTargets

For plants:

miRNAconsTargets_plants.py

or in the Docker:

miRNAconsTargets_plants

6.2 miRNAconstargets parameters

Both implementations (plant and animals) have exactly the same parameters. The

parameters are positional and must be given in this order: 1) microRNA file (fasta), 2)

target file (i.e. 3’UTR sequences in fasta format), 3) output directory, 4) number of

threads, 5) program string and 6) program parameters.

The program string needs to specify the programs separted by ‘:’. The available

programs are: TargetSpy (TS), miranda (MIRANDA), pita (PITA) and SEED (simple

seed method). For example MIRANDA:PITA would use Miranda and Pita while

PITA:SEED:TS would use Pita, seed method and TargetSpy.

The program parameters need to be given in the same order as in 'program_string'. For

example: TS:SEED '-s:1-8' would change the default parameters of TargetSpy to 'detect

only target sites with seeds' (-s) and the definition of the seed region to: seed is from

position 1 to position 8 (default is from 2 to 8)

7 Apendix

7.1 Standalone versions

Currently sRNAbench and sRNAde can be downloaded as standalone versions

(download standalone versions).

7.1.1 Dependencies

https://www.ncbi.nlm.nih.gov/pubmed/15502875
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-292
https://genie.weizmann.ac.il/pubs/mir07/mir07_exe.html
http://bioinfo2.ugr.es/srnatoolbox/standalone/

sRNAbench and sRNAde are implemented in JAVA and need apart from a JRE the

following third party software that needs to be installed and placed in the PATH first.

● Vienna RNA package for RNA Secondary Structure Prediction and Comparison

Vienna package 2. sRNAbench will only work with Vienna 2.0 or higher!

● Bowtie - An ultra-fast memory-efficient short read aligner (Bowtie). sRNAbench

will only work with Bowtie1 but not Bowtie2.

● For the differential expression program sRNAde: edgeR package, DEseq / DEseq2

NOISeq (R packages) and The Apache Commons Mathematics Library

● SRA tool kit: only if the user wants to use data from SRA as input files as those

need to be converted to fastq first.

7.1.2 Get started with the standalone

sRNAbench and sRNAde rely on a local database where most of the library files,

genome sequences, Rscripts and Bowtie indexes need to be stored. The database can

have any arbitrary name and the easiest way to generate it is by means of the “start-up”

DB following the next steps:

1. Download the “start-up” database: sRNAtoolboxDB. Please note that this does not

generate a full database, i.e. it includes only microRNAs for Human, human

herpesvirus type 8 (HHV-8) and Epstein-Barr virus (EBV). To populate the

database, please see below.

2. Extract it to the directory of your choice: tar xvzf sRNAtoolboxDB.tgz . We

recommend to use /opt/sRNAtoolboxDB (All programs take this directory as

default value)

3. Download the most recent version and replace the sRNAbench.jar and sRNAde.jar

files form the database: sRNAbench.jar && sRNAde.jar

After extracting the database, you should see the following folders (:

● libs: The default location for all sequence libraries except the genome sequences

● index: This folder contains the Bowtie indexes of the genome sequences

● seqOBJ: This folder contains the prepared genome sequences in order to access

them rapidly (the files can be generated by means of the makeSeqObj program).

● exec: the programs, i.e. jar and other executable files

● out: The default output folder. This directory is always used if the output=

parameter is omitted

http://www.tbi.univie.ac.at/~ronny/RNA/
http://bowtie-bio.sourceforge.net/index.shtml
http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
https://www.bioconductor.org/packages/release/bioc/html/NOISeq.html
https://www.r-project.org/
http://commons.apache.org/proper/commons-math/
http://www.ncbi.nlm.nih.gov/books/NBK158900/
http://www.ncbi.nlm.nih.gov/sra
http://bioinfo2.ugr.es/sRNAtoolboxDB/sRNAtoolboxDB.tgz
http://bioinfo2.ugr.es/sRNAtoolboxDB/exec/sRNAbench.jar
http://bioinfo2.ugr.es/sRNAtoolboxDB/exec/sRNAde.jar
http://bioinfo2.ugr.es/sRNAtoolboxDB/exec/makeSeqObj.jar

Figure 3: typical folders in sRNAtoolboxDB

7.2 Manually populate sRNAtoolboxDB

There are two ways to populate the database: manually or by means of the populate

program that downloads annotations directly from our annotation database.

7.2.1 Genome sequences

In order to add a genome sequence to the database, two steps are needed:

1. Apply 'bowtie-build' to the genome sequence(s) and place the obtained 6 bowtie

index files into the index folder of the sRNAtoolbox database

2. Apply makeSeqObj to the genome sequence(s) and place the obtained zip file into

the seqOBJ folder. For example, java -jar makeSeqObj.jar hg19.fa . Please note

that this might take a while (hours) in case of big genomes. Furthermore, it is quite

memory demanding, so probably the heap space needs to be increased by means of

-Xmx on the command line. Finally, the bowtie index base names must be the same

then the one of the genome assembly ‘zip’ file.

7.2.2 microRNAs

Known microRNA sequences are best obtained from miRBase or mirGeneDB.

Download mature and hairpin sequences and extract them into the libs folder of the

sRNAbench database. In linux, move to the sRNAtoolboxDB/libs folder and type:

wget -nd ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz

wget -nd ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz

7.2.3 Other small RNA species

Note: populate is preinstalled in the Docker. Download only if you are using

the standalone programs.

Note: microRNA annotations need to be given for 'mature' and ‘hairpin’

sequences (that contain the pre-microRNA). Currently, only fasta input is

supported. Furthermore, the miRBase nomenclature starting with the short

species name 'hsa', 'mmu', 'ath', etc. or miRGeneDB starting with upper case

letters like 'Hsa', 'Mmu' is expected

about:blank
about:blank
http://bioinfo2.ugr.es/sRNAtoolboxDB/exec/makeSeqObj.jar
http://www.mirbase.org/
http://mirgenedb.org/
ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz
ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz
ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz
ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz

Other small RNA annotations can be given either in fasta, BED or GTF format or as

Bowtie indexes. BED and GTF format will be only valid if a genome sequence is

specified with species= (see below sRNAbench parameters). Note that the annotations in

BED format need to be from the same assembly as the used genome sequence. If no

extension is given, sRNAbench will assume the existence of a Bowtie index in the libs

folder aligning directly against it. Otherwise, for a library with 'fa' extension either the

coordinates are obtained by mapping against the genome sequence (if species= is set) or

a Bowtie index is generated first by sRNAbench.

7.2.4 sRNAbench helper tools

We developed some helper tools in order to facilitate the usage of Ensembl and NCBI

annotations. The web-version of the helper tools can be accessed here. For the

standalone versions see here: sRNAhelpers

8 FAQs

Q: When profiling in genome mode, I cannot find some microRNA which are present in

library mode

A: In genome mode, sRNAbench maps the microRNA precursor sequences (hairpins)

first to the genome. If those cannot be mapped, the corresponding microRNAs will no

get profiled.

9 References

Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data.

Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106

Aparicio-Puerta, E., Lebrón, R., Rueda, A., Gómez-Martín, C., Giannoukakos, S.,

Jaspez, D., Medina, J.M., Zubkovic, A., Jurak, I., Fromm, B., Marchal, J.A.,

Oliver, J., Hackenberg, M., 2019. sRNAbench and sRNAtoolbox 2019: intuitive

fast small RNA profiling and differential expression. Nucleic Acids Res. 47,

W530–W535. https://doi.org/10.1093/nar/gkz415

Backes, C., Fehlmann, T., Kern, F., Kehl, T., Lenhof, H.-P., Meese, E., Keller, A.,

2018. miRCarta: a central repository for collecting miRNA candidates. Nucleic

Acids Res. 46, D160–D167. https://doi.org/10.1093/nar/gkx851

Barturen, G., Rueda, A., Hamberg, M., Alganza, A., Lebron, R., Kotsyfakis, M., Shi,

B.-J., Koppers-Lalic, D., Hackenberg, M., 2014. sRNAbench: profiling of small

RNAs and its sequence variants in single or multi-species high-throughput

experiments. Methods Gener. Seq. 1. https://doi.org/10.2478/mngs-2014-0001

Bonnet, E., He, Y., Billiau, K., Van de Peer, Y., 2010. TAPIR, a web server for the

prediction of plant microRNA targets, including target mimics. Bioinformatics

26, 1566–1568. https://doi.org/10.1093/bioinformatics/btq233

Fromm, B., Høye, E., Domanska, D., Zhong, X., Aparicio-Puerta, E., Ovchinnikov, V.,

Umu, S.U., Chabot, P.J., Kang, W., Aslanzadeh, M., Tarbier, M., Mármol-

Sánchez, E., Urgese, G., Johansen, M., Hovig, E., Hackenberg, M., Friedländer,

M.R., Peterson, K.J., 2022. MirGeneDB 2.1: toward a complete sampling of all

https://arn.ugr.es/srnatoolbox/helper

major animal phyla. Nucleic Acids Res. 50, D204–D210.

https://doi.org/10.1093/nar/gkab1101

Gómez-Martín, C., Lebrón, R., Rueda, A., Oliver, J.L., Hackenberg, M., 2017.

sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine, in: Dalmay, T.

(Ed.), MicroRNA Detection and Target Identification: Methods and Protocols,

Methods in Molecular Biology. Springer, New York, NY, pp. 149–174.

https://doi.org/10.1007/978-1-4939-6866-4_12

Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., Yang, J., Lu, X., Hao, C.,

Wang, T., Cao, X., Wei, J., Li, L., Yang, X., 2020. PmiREN: a comprehensive

encyclopedia of plant miRNAs. Nucleic Acids Res. 48, D1114–D1121.

https://doi.org/10.1093/nar/gkz894

Hackenberg, M., Rodríguez-Ezpeleta, N., Aransay, A.M., 2011. miRanalyzer: an update

on the detection and analysis of microRNAs in high-throughput sequencing

experiments. Nucleic Acids Res. 39, W132–W138.

https://doi.org/10.1093/nar/gkr247

Hackenberg, M., Sturm, M., Langenberger, D., Falcón-Pérez, J.M., Aransay, A.M.,

2009. miRanalyzer: a microRNA detection and analysis tool for next-generation

sequencing experiments. Nucleic Acids Res. 37, W68–W76.

https://doi.org/10.1093/nar/gkp347

John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., Marks, D.S., 2004. Human

MicroRNA Targets. PLOS Biol. 2, e363.

https://doi.org/10.1371/journal.pbio.0020363

Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E., 2007. The role of site

accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284.

https://doi.org/10.1038/ng2135

Kozomara, A., Birgaoanu, M., Griffiths-Jones, S., 2019. miRBase: from microRNA

sequences to function. Nucleic Acids Res. 47, D155–D162.

https://doi.org/10.1093/nar/gky1141

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

https://doi.org/10.1186/s13059-014-0550-8

The RNAcentral Consortium, 2019. RNAcentral: a hub of information for non-coding

RNA sequences. Nucleic Acids Res. 47, D221–D229.

https://doi.org/10.1093/nar/gky1034

Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package

for differential expression analysis of digital gene expression data.

Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616

Rueda, A., Barturen, G., Lebrón, R., Gómez-Martín, C., Alganza, Á., Oliver, J.L.,

Hackenberg, M., 2015. sRNAtoolbox: an integrated collection of small RNA

research tools. Nucleic Acids Res. 43, W467–W473.

https://doi.org/10.1093/nar/gkv555

Sturm, M., Hackenberg, M., Langenberger, D., Frishman, D., 2010. TargetSpy: a

supervised machine learning approach for microRNA target prediction. BMC

Bioinformatics 11, 292. https://doi.org/10.1186/1471-2105-11-292

Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A.D., Nueda, M.J., Ferrer, A., Conesa,

A., 2015. Data quality aware analysis of differential expression in RNA-seq with

NOISeq R/Bioc package. Nucleic Acids Res. 43, e140.

https://doi.org/10.1093/nar/gkv711

Wu, H.-J., Ma, Y.-K., Chen, T., Wang, M., Wang, X.-J., 2012. PsRobot: a web-based

plant small RNA meta-analysis toolbox. Nucleic Acids Res. 40, W22–W28.

https://doi.org/10.1093/nar/gks554

